Жизнь на скорости света — страница 25 из 43

M. capricolum не связались с новыми клетками с трансплантированными геномами, а вот антитела к белкам M. mycoides связались.

Параллельно пробам с антителами мы провели гораздо более полный анализ, в котором белки всех трех типов клеток (реципиентные клетки M. capricolum, донорские M. mycoides и потомки клеток с пересаженным геномом) изучались по методу дифференциального двумерного (2D) электрофореза. Можно сказать, что это такой способ увидеть белковое содержимое клеток. Белки, выделенные из клеток, разделяются в одном направлении по своему размеру, а в другом – по электрическому заряду. Клеточные белки расползаются в стороны, и получается характерное распределение пятен, уникальное для каждого типа клеток. Такие паттерны 2D затем можно легко сравнивать друг с другом. Этот метод показал, что распределение белков из голубых клеток почти идентично таковому из донорских клеток M. mycoides и очень отличается от белкового паттерна M. capricolum.

Мы были потрясены этим результатом, но хотели большего. Мы секвенировали фрагменты белков из 90 разных пятен на 2D-геле, используя технологию, называемую масс-спектрометрией на основе матрично-поддерживаемой лазерно-десорбционной ионизации (MALDI). В этом процессе, который еще лет десять назад казался бы какой-то научной фантастикой, пятнышки сепарированных белков вытягивают лазером из геля, образуя восходящий поток заряженных молекул над каждым пятном, а потом подвергают стандартному методу масс-спектрометрии. Таким образом процедура MALDI может выявлять аминокислотную последовательность белкового фрагмента в гелевых пятнах.

Эти данные снабдили нас неопровержимым доказательством того, что в клетке были только такие белки, которые могут быть считаны с трансплантированного генома M. mycoides. Теперь мы абсолютно уверились, что у нас есть новый и оригинальный механизм изменения генетической идентичности клетки, помимо рекомбинации ДНК или естественных механизмов трансформации. Поскольку геном M. capricolum не кодирует процессов захвата ДНК, мы были вправе заключить, что пересадка новой хромосомы в клетки M. capricolum может быть только результатом нашей процедуры трансплантации генома через полиэтиленгликоль. Теперь мы знали, что у нас есть клетки, возникшие в результате намеренной трансплантации генома одного вида в клетку другого. Сделав это, мы в сущности превратили один вид в другой.

Наш успех имел много последствий. Самым важным было то, что теперь мы знали: если бы нам удалось синтезировать геном из четырех бутылей с химикатами, то уже можно было бы взять этот геном и перенести его в клетку-реципиент, где он запустит свои программы. Таким образом работа по трансплантации придала новый импульс нашим попыткам синтезировать ДНК какого-нибудь организма и затем на ее основе создать новую живую клетку.

Другим важным следствием первых пересадок генома стало то, что они дали новое, более глубокое понимание жизни. В ходе наших исследований выкристаллизовалось мое представление о жизни. ДНК – это программное обеспечение жизни, но если мы ее заменяем, тем самым мы меняем видовую принадлежность, а значит, и аппаратную часть клетки. Это был именно тот результат, обнаружения которого хорошей редукционистской наукой так боялись те, кто хотел бы доказать существование некой виталистической силы. Боялись потому, что он неизбежно означал бы попытку разобрать жизнь и само понятие живого на составные части, на простые элементы и базовые функции. Наши опыты почти не оставили места для взглядов виталистов или тех, кто хотел бы верить, что жизнь зависит от чего-то еще, кроме сложного сочетания химических реакций.

Эти эксперименты не оставили сомнений в том, что жизнь – это информационная система. Я видел впереди следующую цель. Я хотел внести в жизнь новую информацию: написать на своем компьютере программу, химическим синтезом воплотить ее в хромосому из ДНК, а затем пересадить эту рукотворную информацию в клетку. Я хотел привести нас в новую эру биологии, породив новую живую форму, которая бы описывалась и управлялась только информацией в ДНК, созданной в лаборатории. Это было бы окончательное доказательство синтезом.

Глава 8. Синтез генома M. mycoides

Если мы хотим решить проблему, с которой никогда не сталкивались раньше, нам следует оставить приоткрытой дверь для неизвестного.

Ричард Фейнман, 1988{152}

Многие считают, что самые важные создания человеческого гения – это результат какого-то провидческого дара, который ассоциируется с такими выдающимися и уникальными творцами, как Исаак Ньютон, Микеланджело, Мари Кюри и Альберт Эйнштейн. Я не сомневаюсь в огромном влиянии отдельных личностей, способных на громадные интеллектуальные скачки, видящих дальше, чем кто-либо до них, и замечающих закономерности там, где остальные видят только хаос. Однако есть также менее яркий вид созидательности, двигающий науку, скромная ее разновидность, которая не менее важна: умение решать проблемы{153}. Преодоление одного препятствия для достижения одной очень конкретной цели может иногда давать на выходе технологию, которая, оказывается, имеет широчайший спектр разных применений. С очень ограниченного плацдарма науку можно подтолкнуть в новых неожиданных направлениях.

Когда, например, Хэмилтон Смит обнаружил, чтÓ именно в бактерии Haemophilus influenzae делает белок, который теперь называется рестриктазой, и как он это делает, вряд ли Хэм собирался основать генную инженерию. Когда британский генетик Алек Джеффрис увидел расплывчатый узор на рентгеновском снимке, который он сделал с генетического материала от одного из своих лаборантов, он даже подумал, что эта смазанная картинка проложит путь для ДНК-криминалистики, – но я сомневаюсь, что он представлял, до чего это дойдет, что она будет использоваться в установлении отцовства, для изучения популяций диких животных и, конечно, в расследовании преступлений. Когда Осаму Шимомура, переживший атомную бомбардировку Нагасаки, собрал с 1961 по 1988 год около миллиона медуз Aequorea victoria, чтобы выяснить тайну их биолюминесценции (белок, названный GFP), он вряд ли мог представить, что даст миру многоцелевую светящуюся метку, которая покажет в живом организме, как развиваются клетки мозга и как раковые клетки проходят сквозь ткани{154}. Когда мы столкнулись с проблемой, которая задерживала нашу работу над синтетической жизнью, – генетический аналог попытки поставить ПО от Microsoft на «макинтош», – ее решение принесло дополнительный бонус: новый способ обращения с большими участками ДНК.

К тому времени в 2007 году мы уже выполнили успешные трансплантации генома, а также закончили трудоемкую сборку из лабораторных химикатов генома M. genitalium из 582 970 пар оснований. Мы создали синтетическую бактериальную хромосому и успешно вырастили ее в дрожжах. Мы также сумели выделить синтетическую хромосому из дрожжей, чтобы проверить ее секвенированием ДНК. Однако то, что мы использовали дрожжевые клетки как аппарат для финальной сборки химически синтезированных сегментов генома, означало, что нам приходилось растить нашу прокариотную (бактериальную) хромосому в эукариотной (дрожжевой) клетке. Чтобы завершить создание нашей синтетической клетки, нам нужно было изолировать синтетическую хромосому из дрожжей в такой форме, которую можно было бы трансплантировать в реципиентную прокариотную клетку.

Вот тут мы наткнулись на несколько непредвиденных проблем. Первая касалась конформации нашей синтетической хромосомы. Мы могли выделить ее в линейной и кольцевой формах для секвенирования ДНК, но, детально прорабатывая пересадку генома, мы обнаружили свидетельства того, что хромосома должна быть интактной, т. е. что ее ДНК не должна нести никаких порезов или «зазубрин». Наш метод очистки был слишком жестким, чтобы давать интактную ДНК. Мы успешно создали цифровую запись, но в таком формате, который не читался ни одним плейером.

Вторая проблема заключалась в том, что наша попытка расширить работы по пересадке генома в другой вид микоплазмы, M. genitalium, оказалась неудачной. Когда мы пересаживали геном M. genitalium в другие клетки того же вида, хромосома всегда рекомбинировала с уже имевшимся там геномом. Это была не единственная проблема. Как мы уже прекрасно знали, хотя геном у M. genitalium самый маленький, это не идеальный организм для разработки новых методов из-за его огорчительно медленной скорости роста. На то, чтобы вырастить колонии, каждый раз уходило до шести недель. Тем не менее мы с трудом, но продвигались. Пока шли эти эксперименты, мы решили, что, успешно пересадив геном M. mycoides в клетки M. capricolum, мы используем эти более быстро растущие виды для решения проблемы получения интактных хромосом из дрожжевых клеток. Нашим первым шагом было посмотреть, сможем ли мы клонировать полный геном M. mycoides в дрожжах. Эта цель казалась достижимой, учитывая наш успех в создании синтетического генома в искусственной дрожжевой хромосоме.

Эту задачу отдали постдоку Гвин Бендерс, работавшей с Клайдом Хатчинсоном. Крупные молекулы ДНК к этому времени рутинно и стабильно росли в дрожжах благодаря добавлению дрожжевого центромера – особого участка хромосомы, который можно видеть под микроскопом как сужение в хромосомах, когда во время деления клетки они образуют характерную Х-образную форму. Этот суженный участок – связующее звено хромосомы, которое играет важнейшую роль в гарантировании того, что, когда клетка делится, каждая дочерняя клетка наследует копию каждой хромосомы. Таким образом, когда центромер добавляется к большому куску ДНК, последний можно скопировать и разделить вместе с дрожжевыми хромосомами во время деления клетки. Этим методом мы могли выращивать кольцевые хромосомы. Молекулы чужой (экзогенной) ДНК можно было растить и в линейной форме, добавляя к ним теломеры – структуры, находящиеся на концах хромосом.