имеет отношение к большому вопросу, откуда первоначально взялась жизнь. Химия зарождения жизни – пребиотическая химия – возвращает нас в 1952 год к знаменитому эксперименту Стэнли Миллера и Гарольда Юри в Чикагском университете. Сложные органические молекулы, включая сахара и аминокислоты, спонтанно образовывались из воды (H2O), аммиака (NH3), водорода (H2) и метана (CH4), когда эти последние оказались в условиях (закрытая стерильная система с нагревом и электрическими разрядами), имитировавших предполагаемые условия молодой Земли{174}. Спустя несколько лет в университете Хьюстона Хуан Оро обнаружил, что нуклеотидное основание аденин и основания других нуклеотидов РНК и ДНК могут спонтанно образовываться из воды, синильной кислоты (HCN) и аммиака{175}.
Многие полагают, что первым важным реплицирующимся генетическим материалом была РНК, и описывают некий «мир РНК», предшествовавший жизни, основанной на ДНК{176}. В 1967 году Карл Вёзе одним из первых предположил, что у РНК могут быть свойства катализатора, так что она и несет генетическую информацию (подобно ДНК), и может вести себя как белки (ферменты), что существенно, потому что практически все химические реакции, проходящие в живой клетке, требуют катализаторов{177}. До самого 1982 года, когда Томас Чек из Колорадского университета в Боулдере показал, что молекула РНК может сама вырезать интрон{178}, а Сидней Альтман из Йельского университета открыл каталитические свойства РНК-компонента рибонуклеазы P{179}, которая может нарезать РНК[26], мы не знали точно, что эти каталитические РНК – «рибозимы» – на самом деле существуют. Чек и Альтман поделили Нобелевскую премию 1989 года по химии за эти открытия{180}.
Рибозимы могут быть ключом в попытках ответить на самый основной вопрос из всех. Как появилась самая первая клетка, будь то на Земле или на какой-то экзопланете?{181} В попытках понять происхождение жизни применялось много подходов, но если и есть какой-то один исследователь, который попытался сделать это путем формирования реальной примитивной «жизни» (с нуля), то это нобелевский лауреат Джек Шостак{182} и его лаборатория в Гарварде. В отличие от групп, работающих на «искусственных клетках», состоящих из белковых систем в липидных пузырьках, но без каких-либо программных молекул жизни, Шостак понимает, что жизни требуется самовоспроизводящийся «информационный геном»{183}. Точка зрения Шостака – между позициями двух лагерей, занятых изучением происхождения жизни. Лагерь первичности программ считает самым важным шагом в происхождении жизни появление репликации РНК как одновременно носителя информации и каталитической молекулы. Другая группа утверждает, что ключевым фактором эволюции первичной жизни стало появление клеточной мембраны в форме самособирающихся и самовоспроизводящихся везикул.
Эти везикулы, пузырьковидные структуры, также известные как мицеллы, спонтанно образуются из липидных молекул, когда концентрация этих молекул превышает определенный порог. Самые первые липидные молекулы, как полагают, были жирными кислотами, которые присутствовали на древней пребиотической Земле и были найдены даже в метеоритах. У их молекул есть гидрофобный (жирный, водоотталкивающий) конец и гидрофильный (любящий воду) конец, которые могут сцепляться, образуя структуры. Липидные молекулы соединяются хвостом к хвосту (жирный конец к жирному), оставляя водолюбивые концы открытыми наружу на внешней и внутренней поверхностях образующейся мембраны. Эта сборка действует как эффективный барьер, удерживающий растворенные в воде молекулы внутри пузырька, чтобы создать уникальную среду.
В совместной работе со своей студенткой Ирене Чен и Ричардом Робертсом{184} из Калтеха Шостак показал, что простое присутствие РНК в пузырьках, образованных жирными кислотами, может ускорить их рост, отбирая мембранные молекулы из соседних везикул, содержащих меньше РНК или не содержащих ее вовсе{185}. Этот рост происходит, потому что РНК в везикулах создает осмотическое давление. Это внутреннее давление распирает мембрану, и она растет за счет поглощения жирных кислот из любых окружающих везикул, которые менее раздуты вследствие того, что в них меньше нуклеиновой кислоты. Протоклетки, в которых было больше РНК, росли быстрее, до момента, когда при легком встряхивании – например, под действием ветра или волн на первичной Земле – они разваливались на дочерние везикулы.
Следующим шагом Шостака снова было вставить РНК, но на этот раз оснастить эту программу полезными инструкциями для его протоклеток. Эта информация может кодировать способы создания фосфолипидов, класса липидов, которые характерны для современных мембран. Это стало бы критическим этапом в переходе от примитивных мембран, основанных на жирных кислотах, к современным клеточным мембранам на фосфолипидах. Таким образом, внесение программной РНК в протоклетки делает теоретически возможными простые самовоспроизводящиеся системы. Это захватывающие исследования, и, я уверен, они продемонстрируют, что самовоспроизводящиеся клетки могут формироваться из пребиотических химикатов.
Если синтетический генетический материал можно составить так, чтобы он катализировал собственную репродукцию внутри искусственной мембраны, значит, в лаборатории могла бы быть создана примитивная жизнь. Возможно, эти клетки походили бы на первые формы жизни на Земле, существовавшие четыре миллиарда лет назад, но скорее они будут представлять собой нечто совершенно новое. Важно, что эти первые синтетические клетки, как и те, что были на заре жизни, будут обладать огромным потенциалом: способностью к мутациям и дарвиновской эволюции. Я уверен, что, когда дойдет до амбициозной цели превращения ДНК в клетку, они станут источником ценных идей и для моей собственной команды, и для многих других, кто исследует эти важные проблемы.
Дополняя эту работу по происхождению жизни, мы проводим новое исследование, долгосрочная цель которого – сотворение «универсальной реципиентной клетки», которая сможет принимать любую синтетическую ДНК с программой, настроенной на создание жизни, причем назначенного вида. Сейчас количество типов реципиентных клеток, которые мы используем для пересадки генома в наших лабораториях, очень ограниченно. Чтобы создать универсальную реципиентную клетку, мы сейчас переписываем генетический текст клетки микоплазмы, чтобы она приобрела способность транслировать и транскрибировать любую пересаженную ДНК. Это исследование должно расширить и детализировать наши догадки о том, почему жизнь существует в виде маленьких упаковок, которые мы называем клетками.
Есть и более радикальный подход: мы ищем возможность обойтись вообще без существующей клетки в качестве реципиента для синтетического генома. Мы надеемся, что сможем создать полностью синтетические клетки – начав с бесклеточных систем и добавляя затем основные компоненты, собрать в итоге полную клетку. Это могло бы стать потрясением основ, но опять же сходные исследования известны с удивительно давних времен. Еще в начале революции ДНК, в 1950-х, несколько исследовательских команд независимо продемонстрировали, что клетка не строго необходима для выполнения некоторых основных жизненных операций. Они обнаружили, что производство белков может идти даже после того, как мембрана клетки распалась.
Это впервые предположил Пол Чарльз Замечник, профессор медицины в Гарвардской медицинской школе и старший научный сотрудник в соседней Массачусетской больнице. Он заинтересовался этой проблемой в 1938 году, когда при вскрытии патологически ожиревшей женщины он был поражен обилием жира в ее тканях при относительной бедности их белком. Это побудило его поинтересоваться, как производятся белки – вопрос, который будет занимать его в течение большей части его дальнейшей карьеры{186}. В какой-то момент он понял, что для выяснения промежуточных стадий синтеза белков ему нужно разработать бесклеточную систему. После нескольких лет опытов он наконец добился этого с помощью коллеги Нэнси Бачер, проложив путь многим важным прозрениям: от выявления, что для синтеза белка нужна АТФ, до открытия, что место сборки белка – рибосомы.
Многие исследовательские группы работали по воссозданию биологических процессов из отдельных компонентов. В 1955 году Хайнц Френкель-Конрат и Робли Уильямс были первыми, кто показал на примере вируса табачной мозаики, что действующий вирус можно создать из очищенной РНК и белковой оболочки. Вскоре последовала расшифровка основ генетического кода и того, как информация передается с ДНК к белку, – в пионерной работе 1961 года Маршалла Ниренберга и его сотрудника-постдока Иоганна Генриха Маттеи{187}. В своем эксперименте они приготовили экстракт из бактериальных клеток, который мог вырабатывать белок, хотя цельных живых клеток в нем не было. Используя искусственную РНК и аминокислоты с радиоактивными метками, они открыли, что три урацила (УУУ) образуют кодон для аминокислоты фенилаланина.
С тех пор стало обычным делом – взять ДНК или РНК и получать белки в пробирке. В результате внеклеточный синтез белка стал важным инструментом для молекулярных биологов. Первоначально эти методы требовали экстрактов клеток, но затем появилась так называемая система