Жизнь на скорости света — страница 31 из 43

PURE (синтез белка с рекомбинантными элементами), когда синтез белка ведется в бесклеточной системе{188} с трансляционной механикой от E. coli, воссозданной из очищенных веществ и рибосом. Мы сейчас пытаемся использовать коктейль из ферментов, рибосом и химикатов (включая липиды) и синтетического генома, чтобы создавать новые клетки и формы жизни, не нуждаясь в естественных клетках. В ближайшие годы будет всё легче создавать широкий спектр клеток с написанных на компьютере программ жизни в бесклеточных системах и/или через универсальную клетку-реципиент.

Окончательное овладение технологией создания клеток с нуля откроет невероятные новые возможности. Во-первых, изучая эту границу между живым и неживым, мы сможем уточнить наше определение понятия «жизнь». Другим последствием этой работы может стать то, что мы будем иначе определять слова «машина» и «организм»{189}. Способность создавать жизнь без естественных клеток будет иметь также вполне практические применения: мы сможем повысить степень свободы в проектировании новых форм жизни. Мы сможем изучать и прежние формы жизни, воссоздавать геномы вымерших существ на основании геномов их живых потомков и использовать искусственные клетки для реализации этих древних программ.

Мы также начнем пользоваться возможностями наборов синтетических клеток. Человеческое тело само по себе замечательное коллективное предприятие, в котором только пищеварительная система приютила около ста триллионов микробов – примерно в десять раз больше, чем число клеток во всех крупных органах вашего тела. Подавляющее большинство их – дружественные микробы, которые сотрудничают с нашей биохимией. Эта склонность клеток работать совместно появилась в истории жизни относительно рано. Многоклеточные цепочки бактерий возникли около 3,5 миллиарда лет назад. Были и другие формы микробного сотрудничества, как упоминалось ранее. Покойная Линн Маргулис из Университета Массачусетса в Амхерсте предположила, что эукариотные клетки приобрели свои системы фотосинтеза и вырабатывающие энергию митохондрии путем симбиогенеза – взаимно полезного слияния двух предковых клеток.

За столь древними примерами последовала новая волна сотрудничества, когда эти сложные клетки сами объединялись, образуя сообщества, – в эволюции это происходило независимо несколько раз. Более 600 миллионов лет назад появление гребневиков – студенистых прозрачных животных с хорошо развитыми тканями – отметило точку разветвления многоклеточной жизни. Губки – это другой древний пример отдельных клеток, которые объединились в более сложные тела. Они состоят из нескольких разных типов клеток – пищеварительных клеток, клеток, которые выделяют спикулы (сегменты скелета губки), и так далее, – и все они могут общаться друг с другом и действовать вместе как единая особь.

В геноме губки Amphimedon queenslandica – фирменной губки Большого Барьерного рифа – можно видеть некоторые из генетических механизмов, позволяющих индивидуальным клеткам работать совместно{190}. Существует с полдюжины критериев многоклеточности: регулируемый клеточный цикл и рост; программируемая смерть клетки (так называемый апоптоз); адгезия (прилипание) клетки к клетке и клетки к субстрату, позволяющая клеткам держаться вместе; сигналы развития и генная регуляция; механизмы защиты от вторгающихся патогенов; наконец, специализация типов клеток, благодаря которой у нас есть нервные клетки, мышечные клетки и т. д. Если учесть, сколько раз многоклеточность возникала независимо, то непохоже, что переход к ней можно объяснить чем-то одним, за исключением того, что клеточное сотрудничество было наилучшим решением эволюционного вопроса, как успешнее передать свои гены следующему поколению – посредством ли защиты от специфических паразитов или развития более эффективного способа передвигаться и разведывать доступные ресурсы еды и энергии.

С появлением синтетической клетки мы сможем выявить детали механизмов перехода к многоклеточности. Синтетические клетки можно будет разобрать и упростить, чтобы посмотреть, как каждый из перечисленных выше факторов многоклеточности может влиять на способность клеток общаться и сотрудничать. Это дало бы нам беспрецедентный инструмент для распутывания невероятно сложных взаимодействий, которые происходят между клетками в многоклеточном существе, будь то червячок-нематода или человек. В то же самое время мы наверняка попытаемся построить синтетическое многоклеточное существо снизу вверх, из синтетических клеток, содержащих синтетические органеллы, чтобы исследовать эту тончайшую форму сотрудничества.

Еще в конце 1960-х команда в Университете штата Нью-Йорк в Баффало успешно создала относительно крупный организм, Amoeba proteus, из крупных клеточных компонентов: ядра, цитоплазмы и клеточной мембраны{191} от других амеб. Они сообщили, что «успех наших экспериментов по перекомпоновке организма означает, что теперь у нас есть техническая возможность собирать амеб с любым желаемым сочетанием составных частей, что дает нам отличную тестовую систему». Мы можем дать этим произведенным клеткам более эффективные клеточные барьеры или создать синтетический эндоплазматический ретикулум – усеянную рибосомами органеллу, на которой идет синтез и накопление белка.

В ходе наших работ на микоплазме и других организмах мы уже установили ингредиенты базового рецепта живой клетки: это коктейль из трех-пяти сотен белков (примерно столько же, сколько обнаружилось в работе Люси Шапиро по «необходимому геному» бактерии Caulobacter crescentus). Представьте, что мы сможем систематически разрабатывать варианты механизмов жизни, выясним, какие компоненты критичны, а какие нет, и докопаемся, как они работают вместе. Это будет благом для синтетической биологии, так как расширит спектр биологических компонентов, подпрограмм и схем, которые мы можем разработать.

Глава 10. Жизнь под заказ

Новая разновидность, выведенная человеком, представится более любопытным и важным предметом изучения, чем добавление еще одного вида к бесконечному числу уже занесенных в списки.

Чарльз Дарвин. «Происхождение видов» (1859){192}

Когда мы создаем и пишем новое программное обеспечение для живых клеток, то как можно убедиться, что оно будет работать? Очевидный способ – попытаться на самом деле создать эту клетку, но пока что это относительно дорогой и долгий процесс, а если не получится, вы останетесь в недоумении – то ли проблема в самой программе, то ли в установках системы, которая превращает инструкции ДНК в реальность. В будущем компьютерное моделирование предложит способ проверить наши знания путем создания виртуальных клеток до того, как делать реальные. Роль компьютерного моделирования жизни сегодня больше, чем когда-либо прежде, и продолжает расти – отчасти из-за экспоненциального роста мощности компьютеров, отчасти потому, что современная биология уже оценила богатый урожай новой информации, приносимый быстро множащимися исследованиями такого рода. Последние двадцать лет, например, научное сообщество набирало все больше подробных данных по биологическим объектам, от системного анализа до изощренно сложенной трехмерной структуры белков. Разнообразие молекулярных машин с широким спектром функций изумительно, и мы узнаем все больше о том, как они взаимодействуют друг с другом и с другими клеточными компонентами. В результате этого потопа данных уже очень многое из основных жизненных процессов можно смоделировать in silico в дополнение к лабораторным экспериментам.

Компьютерной имитацией жизненных процессов уже десятилетиями занимается множество групп, применяющих модели разной степени сложности. В числе прочего моделируются и биохимические процессы – от генного регулирования до имитации метаболизма и синтеза белка. В Европе, например, проект Virtual Physiological Human{193} («Виртуальная физиология человека») нацелен на моделирование в компьютере работы органов для создания виртуального тела. Чтобы успешно сделать это, участникам пришлось собрать воедино широкий круг сведений по физиологии, в том числе о десятках тысяч генов и их вариантов и о куда большем числе белковых компонентов, измененяющихся в ходе метаболизма.

Попытки моделировать органы и ткани предпринимались уже довольно давно. Первые математические модели сердечных клеток появились в 1960 году{194}. К 1980-м показатели – электрические, химические и механические – сокращения клетки сердечной мышцы были довольно хорошо изучены, и стало возможно создать компьютерную модель биения клетки сердца. Три десятка уравнений описывают ключевые клеточные химические процессы, в частности работу ионных каналов, позволяющих сердечным клеткам порождать и проводить электрические сигналы. Увеличение мощности компьютеров с тех пор сделало возможным имитацию биения миллиардов таких клеток во всех четырех камерах виртуального сердца{195}.

Опыты по имитации органов также направлены на мозг с его миллиардами взаимосвязанных нейронов. В рамках проекта Human Brain{196} («Человеческий мозг») в Федеральной политехнической школе в Лозанне, на берегах Женевского озера, к 2008 году удалось имитировать микроконтур, состоящий из блока в десять тысяч клеток коры мозга – того тонкого слоя, с которым связаны самые интересные и продвинутые функции мышления. Для имитации человеческого мозга с его ста миллиардами нейронов понадобится не меньше десятка лет, и, начиная в 2013 году соответствующий проект, Еврокомиссия объявила, что потратит на него миллиард евро