Жизнь науки — страница 108 из 134

Цюрих, август 1928 г.


КЛАССИЧЕСКИЕ ГРУППЫ, ИХ ИНВАРИАНТЫ И ПРЕДСТАВЛЕНИЯ

С тех пор как мне удалось в 1925 г., комбинируя инфинитезимальныс методы Э. Картана и интегральный метод И. Шура, определить характеры полупростых непрерывных групп, я поставил своей целью вывести главные результаты для наиболее важных из этих групп, в частности, для полной группы невырожденных линейных преобразований и для ортогональной группы, прямым алгебраическим построением. Благодаря, главным образом, работам и сотрудничеству Р. Броуэра в течение последних нескольких лет, я в настоящее время обладаю всеми необходимыми для этого средствами. Задачу можно точно охарактеризовать следующим образом: разложить пространство тензоров заданного ранга на его неприводимые инвариантные подпространства относительно заданной группы линейных преобразований в полояхениом в основу векторном пространстве. Другими словами, предметом нашего изучения будут различные типы линейно преобразующихся «величин», которые можно приготовить из материала тензоров прп режиме той или иной группы. Такова проблема, образующая один из стержней этой книги, и, в соответствии с алгебраическим подходом, решение ее разыскивается не только в поле вещественных чисел, на котором анализ и физика разыгрывают свои сражения, но и в произвольном поле характеристики нуль. Однако я не пытался охватить поля простой характеристики.

Понятие алгебраического инварианта абстрактной группы у не может быть сформулировано, покуда мы не владеем понятием представления Я группы линейными преобразованиями, или эквивалентным понятием «величины типа St». Поэтому проблема нахождения всех представлений или величин группы у должна логически предшествовать проблеме нахождения алгебраических инвариантов этой группы. (По поводу понятии величин и инвариантов более общего характера и их тесной взаимосвязи отсылаем читателя к главе I, где эрлангенская программа Клейна пересказана в несколько более абстрактных терминах.) Второй моей целью является — дать современное введение в теорию инвариантов. Уже давно пора омолодить классическую теорию инвариантов, впавшую почти в окаменелое состояние. Оправданием тому, что я придерживался значительно более копсервативпого стиля, чем это, вероятно, казалось бы желательным нашему молодому поколению алгебраистов, является нежела-ппе жертвовать прошлым; но даже при этом, надеюсь, я достаточно решительно прокладывал путь к современным концепциям. Я не претендовал на то, чтобы написать монографию по современной теории инвариантов: систематическое руководство должно было бы содержать много вещей, обойденных здесь молчанием.

Как видно из предшествующего описания, предмет этой кпиги довольно специальный. Как бы важны ни были общие понятия и предложения, которыми одарило нас современное деятельное увлечение аксиоматизированием и обобщениями, распространенное в алгебре, быть может, больше, чем в какой бы то ни было другой области,— все же я убежден в том, что именно специальные проблемы во всей их сложности составляют опору и стержень математики; и преодоление их трудностей требует, вообще говоря, наиболее серьезных усилий. Разумеется, линия раздела здесь неопределенна и текуча. Однако общей теории представлений групп совершенно сознательно посвящено едва лп более двух страниц, тогда как применение этой теории к рассматриваемым группам частного вида занимает по крайней мере в пятьдесят раз больше места. Общие теории показаны здесь в их возникновении из специальных проблем, анализ которых приводит к этим теориям как действенному инструменту решения, с почти принудительной необходимостью; но однажды появившись, этп теории освещают широкую область за пределами ограниченного участка их возникновения. В этом духе мы изложим, среди прочих вещей, учение об ассоциативных алгебрах, возвысившееся в последнее десятилетие до руководящего положения в математике.

Связи с другими частями математики подчеркнуты здесь всюду, где к этому представляется случай, и несмотря на алгебраический, в основном, характер книги, не обойдены ни инфинитезимальный, ни топологический методы. Опыт подсказывает мне, что борьба с опасностью слишком сильной специализации и технизации математического исследования особенно важна в Америке. Строгая точность, достижимая математическим мышлением, привела многих авторов к манере изложения, которая должна произвести па читателя такое впечатление, как если бы он был заключен в ярко освещенную камеру, где каждая деталь выделяется с одинаково ослепляющей ясностью, но без рельефности. Я предпочитаю открытый ландшафт под ясным небом с его глубиной перспективы, где обилие отчетливо очерченных близких деталей постепенно сходит на нет по мере удаления к горизонту. В частности, горный массив топологии лежит для этой книги и ее читателя у горизонта, и потому те его части, которые следовало поместить в картину, даны лишь в грубых чертах. От читателя ожидается здесь готовность переключаться на точки зрения, отличные от принятых в алгебраических частях, и добрая воля к сотрудничеству.

Книга предназначена, главным образом, для тех, кто скромно хочет узнать изложенные в ней новые вещи, а не для гордых ученых, уже знакомых с предметом и желающих лишь получить быструю и точную справку о той или иной детали. Она не является ни монографией, ни элементарным учебником. В том же духе составлены и ссылки на литературу.

Боги наложили на мои писания путы чужого языка, не звучавшего у моей колыбели:

«Was dies heissen will, weiss jeder,

Der im Traum pferdlos geritten» [80]

— хотелось бы мне сказать вместе с Готфридом Келлером. Никто более меня не почувствует связанной с этим утраты силы, легкости и ясности выражения. Если, все же, удалось избежать хотя бы грубейших ошпбок, то этим относительным достижением я целиком обязан преданному сотрудничеству моего ассистента, д-ра Альфреда Клиффорда; но еще более ценной, чем лингвистическая, была для меия его математическая критика.

Принстон, Нью-Джерси, сентябрь 1938 г.

БУРБАКИ[81]

Под именем Никола Бурбаки известна группа ученых, доставивших себе целью дать систематическое изложение всей современной математики, следуя аксиоматическому методу. Эта идея, восходящая еще к Давиду Гильберту, была осуществлена в серии монографий «Элементы математики», которая начала выходить с 1939 года. За 30 лет таким образом было написано более 40 книг. Точный состав группы, в которую входят в основном французские математики — главным образом питомцы Нормальной школы, держится в тайне. Одпако представление как об идейных истоках, так и о составе группы Бурбаки можно получить из следующего иронпческого траурного сообщения, разосланного в 1969 г. по ведущим математическим институтам мира в связи с предполагаемым прекращением деятельности этого уникального творческого коллектива. Ниже следует перевод текста, полученного в Математическом институте им. В. А. Стеклова АН СССР:

"Семейства Кантор, Гильберт, Нётер; семейства Картан, Шеваллье, Дьедонне, Вейль; семейства Брюа, Диксмье, Годеман, Самюэль, Шварц; семейства Демазюр, Дуадн, Жиро, Вердье; семейства, фильтрующиеся вправо, и строгие эпиморфизмы мадемуазели Адель и Идель с прискорбием сообщают о кончине господина Никола Бур-баки, соответственно их отца, брата, сына, внука, правнука и внучатого племенника, почившего в бозе 11 ноября 1968 года в День Победы в своем имении в Нанкаго.

Погребение состоится в субботу 23 ноября 1968 года, в 15 часов, на кладбище Случайных функций (станция метро Марков и Гедель).

Сбор перед баром «У прямых произведений», перекресток Проективных резольвент (бывшая площадь Кошуля).

По воле покойного, мессу в Соборе Богоматери универсальных проблем отслужит Его Преосвященство кардинал Алеф Первый, в присутствии уполномоченных представителей всех классов эквивалентности и слоев замкнутых отображений. Память покойного минутой молчания почтят воспитанники Высших Нормальных школ и Классов Черна.

Цветы, венки и сплетения просьба не возлагать.

«Ибо, Господь есть Александровская компактификация Вселенной» (Евангелие от Гротендика, гл. IV, стр. 22)»“.

Ниже следует введение к первому тому «Элементов математики» — «Теории множеств» (1938), где формулируется точка зрения авторов этого всеохватывающего труда.

ЭЛЕМЕНТЫ МАТЕМАТИКИ. ТЕОРИЯ МНОЖЕСТВ
Введение

Со времен греков говорить «математика» — значит говорить «доказательство». Некоторые сомневаются даже, что вне математики имеются доказательства, в том точном и строгом смысле, какой получило это слово у греков и какой мы хомм придать ему здесь. С полным правом можно сказать, что этот смысл не изменился. То, что было доказательством для Эвклида, остается доказательством и в наших глазах; а в эпоху, когда понятие доказательства было под угрозой утраты и математика находилась из-за этого в опасности, образцы искали именно у греков. Однако к столь славному наследию в течение последнего века прибавились новые важные завоевания.

Действительно, анализ механизма доказательств в хорошо подобранных математических текстах позволил раскрыть строение доказательств с точка зрения как словаря, так и синтаксиса. Это привело к заключению, что достаточно ясный математический текст можно было бы выразить на условном языке, который содержит лишь небольшое число неизменных «слов», соединяемых друг с другом, согласно синтаксису, состоящему из небольшого числа не допускающих исключений правил; так выраженный текст называется формализованным. Запись шахматной партии с помощью обычной шахматной нотации и таблица логарифмов »суть формализованные тексты* Формулы обычного алгебраического псчисления т&кже будут формализованными текстами, если полностью кодифицировать правила, управляющие употреблением скобок, и строго их придерживаться; но в действительности некоторые из этих правил познаются лишь в процессе употребления, и этот же процесс санкционирует некоторые отступления от них.