Интересно, что корневой конец зародыша приобретает вскоре после выхода из семени ярко-зеленый цвет. В нем образуется хлорофилл и, поскольку развитие зародыша омелы происходит на свету и в воздушной среде, здесь идут процессы фотосинтеза и корешок, таким образом, сам помогает себе в получении пропитания. В этот момент своей "биографии" корешок имеет даже устьица — как настоящий лист. Однако трудовая деятельность корешка на благородном поприще созидания органического вещества при посредстве фотосинтеза продолжается очень недолго. Вскоре он внедряется в кору чужой ветки, и молодая омела начинает паразитическую жизнь за счет соков растения-хозяина.
Скальпель в руках ботаников
До сих пор, рассказывая об эмбриологии растений, мы останавливались лишь на описании тех процессов, что происходят в растении, и на общебиологическом значении этой отрасли науки. Но в задачи эмбриологии, как и всех других наук, входит не только понять суть явлений, а и уметь управлять ими. Слова о науке, которая становится сегодня непосредственной производительной силой, в полной мере относятся и к эмбриологии растений.
В главе, посвященной цветению растений, мы уже рассказывали о тех заманчивых для сельского хозяйства перспективах, которые открыли бы глубокое и полное познание механизмов, управляющих этим процессом. К сожалению, в этом направлении успехи еще незначительны. Но в целом эмбриология растений уже немало дала практике. Проникновение в тайны развития живых организмов помогает ботаникам активно воздействовать на самые интимные процессы жизни растений. И уже в 20-х годах нашего века из теоретической эмбриологии выделилась многообещающая отрасль исследований — экспериментальная эмбриология растений, которая вооружает практиков конкретными методами воздействия на развитие зародыша.
Гибриды. история и современность
Предыстория экспериментальной эмбриологии растений начинается с того времени, когда в практике селекционной работы начали применять гибридизацию — скрещивание неродственных растений с целью получения потомства, обладающего ценными свойствами и признаками обоих родителей. Первый искусственный гибрид от скрещивания двух сортов гвоздик был получен английским садоводом Ферчайлдом еще в начале XVIII в. Гибрид этот назвали "растительным мулом", ибо наибольшей известностью в те времена пользовалась гибридная помесь лошади и осла — неприхотливый и выносливый мул.
Однако известие об удаче Ферчайлда было скептически встречено ботаниками. Как мы уже знаем, в те времена отрицалось само разделение растений на два пола. Тем более сомнительной казалась возможность гибридизации. К тому же этот скромный опыт садовода не обещал как будто бы каких-либо важных хозяйственных перспектив и потому не был подхвачен. Первые доказательства большого практического значения гибридизации растений были представлены русским ботаником академиком И. Кельрейтером уже во второй половине XVIII в. Получив потомство от скрещивания виргинского и перуанского Табаков, он отметил его более быстрое по сравнению с родительскими формами развитие и большую мощность. Впоследствии эта "вспышка" жизненных сил у гибридов первого поколения получила название гетерозиса. Кстати, природа этого явления остается неясной до сих пор и над выяснением ее трудятся многие ученые.
Но в практике получение гибридных — гетерозисных — семян применяется сегодня очень широко, особенно при возделывании кукурузы. Сейчас во многих странах, в том числе и у нас в Советском Союзе, кукуруза, идущая на товарное зерно, выращивается почти исключительно из гибридных семян. И это несмотря на то, что производство таких семян — длительный и трудоемкий процесс. Для получения наибольшего эффекта выводят угнетенные самоопылением родительские линии. Семь поколений подряд растения отцовского и материнского сортов в отдельности тщательно оберегают от "чужой" пыльцы. Из года в год потомки самоопыляющихся линий становятся все более и более чахлыми. Лишь на восьмой год линии отцовского и материнского сортов скрещивают между собой, а на девятый из гибридных уже семян получают могучие растения, которые дают обильный урожай, с лихвой возмещающий затраты на кропотливую и долгую предварительную селекционную работу.
Но значение гибридизации состоит не только в получении потомства первого поколения, обладающего повышенной жизнеспособностью.
Когда-то человек обратил внимание на пищевую ценность злаков и бобовых, овощных и плодовых растений и ввел их в культуру. Несколько позже его заинтересовали волокна хлопка, льна, конопли. И эти растения тоже были "приручены" им, стали возделываться на полях. Непрерывное стремление улучшать используемые растения привело к тому, что человек стал оставлять для размножения только семена от лучших экземпляров: их ценные хозяйственные качества передавались потомству. Такую работу по улучшению возделываемых культур Чарлз Дарвин назвал искусственным отбором.
Часто, однако, случается так, что качества, которые человек хотел бы найти в одном растении, обнаруживаются у растений, принадлежащим к разным, хотя и родственным, видам или разным сортам культурных растений. Тогда-то, чтобы сочетать эти качества, приходится прибегать к скрещиванию, к гибридизации.
Но живая природа "устроена" так, что растения, принадлежащие к разным видам, не могут свободно скрещиваться.
Для получения нового растения — межвидового гибрида — нужно, во-первых, чтобы пыльцевое зерно, перенесенное из тычинки одного растения на рыльце другого, могло прорасти на этом рыльце; во-вторых, чтобы образованная этим зерном пыльцевая трубка нормально росла в тканях столбика и завязи материнского растения и длины ее хватило для проникновения спермиев в зародышевый мешок; в-третьих, чтобы ядра спермиев смогли соединиться с ядрами яйцеклетки и центральной клетки и дать начало зародышу нового живого организма. Но и это еще не все. Нужно, чтобы зародыш нового растения имел, особенно на первых порах своей жизни, все необходимые для его развития условия.
Часто при гибридизации случается так, что обеспечение этих условий — нормального опыления, оплодотворения и развития зародыша — становится очень трудоемким делом, задачей, которая требует больших и долгих усилий многих исследователей.
Невозможное — возможно!
Предположим, что селекционеру потребовалось скрестить два зацветающих в разное время сорта риса или ячменя. Еще недавно такое скрещивание было бы невозможно: пыльцевые зерна и риса и ячменя очень быстро теряют способность к прорастанию.
Чтобы ликвидировать этот разрыв во времени созревания пыльцы и семяпочек у двух исходных для скрещивания сортов растений, пришлось разработать методы длительного хранения пыльцы. Исследования позволили выяснить, что для длительного сохранения жизнеспособности ее необходимы пониженная температура и влажность. Искусственно создавая эти условия, удается сохранять жизнеспособную пыльцу ранних сортов до зацветания поздних и осуществлять таким образом ранее невозможные скрещивания. Например, пыльца злаков (отличающаяся тем, что очень быстро теряет способность к прорастанию) сохраняла в искусственных условиях свою жизнеспособность в 30 раз дольше, чем в природе. В некоторых опытах пыльца яблони при температуре 2 — 8°С и влажности, равной 50%, оставалась живой в течение 4,5 лет, а пыльца вишни — даже в течение 5,5 лет.
Препятствием для межвидового скрещивания может оказаться длина пыльцевой трубки, выросшей из пыльцевого зерна отцовского растения. Бывает так, что она имеет меньшую длину, чем столбик цветка материнского растения, и спермин именно поэтому не могут проникнуть в зародышевый мешок. Убедившись, что успеху скрещивания препятствует именно это обстоятельство, некоторые исследователи срезали рыльце материнского цветка и наносили пыльцу прямо на укороченный столбик. Это подчас приводило к желаемому результату.
Но не всегда пестик со срезанным рыльцем оказывался способным воспринимать чужую пыльцу. Точнее, сама пыльца не хотела прорастать вне привычной среды рыльца, покрытого клейкими выделениями и более рыхлого, чем другие ткани пестика. Эмбриологам все же и в этом случае удалось "перехитрить" природу. Они вырезали среднюю часть столбика, а верхнюю его часть вместе с рыльцем приживляли к нижней; так получался цветок со значительно укороченным пестиком. Пыльца прорастала, и пыльцевые трубки достигали зародышевого мешка.
Рис. 34. Если межвидовой гибридизации препятствует высота столбика, при которой пыльцевая трубка не может дорасти до зародыша, делу помогает несложная операция: в одном случае грубая — срезают часть столбика вместе с рыльцем; в другом более тонкая — столбик укорачивают, но к оставшейся части приживляют рыльце, чтобы создать наилучшие условия для прорастания пыльцы
Однако даже такое укорачивание пестика не всегда приводило к желаемому результату. Поэтому исследователи попытались вводить пыльцу с помощью шприца непосредственно в завязь материнского растения. Такой способ искусственного опыления долгое время не удавался. Но в последние годы стало известно несколько удачных опытов. Ботаники считают этот способ многообещающим и надеются, что со временем он будет широко освоен селекционерами.
Индийским ученым удалось добиться успеха в осуществлении еще одного любопытного метода искусственного опыления растений. Они вырезали из цветков одного из видов мака отдельные семяпочки и помещали в стерильные пробирки на питательную среду. Туда же помещали и пыльцевые зерна этих растений. Пыльца активно прорастала, многие пыльцевые трубки достигли семяпочек и оплодотворили их.
Операция на семени
Надо сказать, что затруднения в получении межвидовых гибридов далеко не исчерпываются перечисленными выше случаями. Нередко бывает так, что пыльца прорастает нормально, пыльцевые трубки дорастают до завязи и ничто, казалось бы, не препятствует оплодотворению, но оно все-таки не происходит. Почему это получается и как можно помочь природе обойти препятствия? К сожалению, ни на первую, ни на вторую часть этого вопроса эмбриологи пока еще не знают ответа.