Жизнь цветка — страница 8 из 21

В качестве примера возьмем грушанку — частое и обыкновенное растение лесов средней полосы Европейской части Советского Союза.

Семяпочка, как ранее сам плодолистик, начинается с небольшого бугорка из однородной образовательной ткани. Вскоре после зарождения бугорка вершина его вследствие направленного деления клеток и неравномерного их роста начинает изгибаться. В то же время в верхней части зачатка семяпочки одна из клеток на некоторое время теряет способность к делению, быстро увеличивается в размерах и заполняется густой цитоплазмой. Это — археспориальная клетка. Именно она даст впоследствии начало новому поколению.

Рис. 14. Так формируется в цветке семяпочка с зародышевым мешком. Вначале это был просто бугорок из клеток однородной образовательной ткани, среди которых обособилась одна — археспориальная

У грушанки в женском спорангии, в отличие от мужского, закладывается только одна археспориальная клетка. Вскоре она превращается в материнскую клетку женских спор. Ядро ее испытывает ряд сложных превращений, и, наконец, после двойного (1-е — мейотическое, 2-е — митотическое) деления из материнской клетки образуется тетрада — четыре лежащие либо друг за другом, либо Т-образно женские споры.

В конечном итоге семяпочка изгибается столь сильно, что верхний ее конец направляется теперь уже к тому месту, где некогда возник первоначальный бугорок. Внешний покров одевает тело семяпочки таким образом, что над ее вершиной остается только небольшой канал — микропиле, или пыльцевход. Впоследствии, когда будет совершаться процесс оплодотворения, через этот канал в семяпочку проникнет пыльцевая трубка со спермиями.

В мужском спорангии все споры имеют равные возможности для развития. В женском же такую возможность получает лишь одна из четырех спор. Вскоре после завершения редукционного деления эта "избранница" начинает ускоренно расти. Три другие, напротив, постепенно разрушаются, и продукты их разрушения использует растущая спора, так же как и многие клетки окружающей ее ткани.

Женский гаметофит, развивающийся из женской споры, носит в эмбриологии растений название зародышевого мешка.

Но прежде чем перейти к описанию его развития и строения, следует напомнить, что нами был рассмотрен лишь один вариант развития семяпочки. Возможны и другие. Например, микропиле в процессе развития поворачивается на 360°, и семяпочка становится в конечном итоге как бы снова прямой. Случается и так, что в теле семяпочки возникает не одна, а две или даже целая группа археспориальных клеток. Развитие их протекает обычно на основе конкуренции, и та, что в силу каких-либо обстоятельств вырывается вперед, угнетает и поглощает своих "сестер", Есть и иные особенности "биографии", семяпочек.

Но перейдем к развитию зародышевого мешка.

В женской споре начинается деление ядра, но своеобразное — оно не сопровождается образованием клеточных оболочек. После первого деления дочерние ядра расходятся к полюсам клетки. Каждое из дочерних ядер делится еще два раза. В конечном итоге образуется восьмиядерная клетка с четырьмя ядрами у каждого из ее полюсов. Кстати, полюса эти имеют свое название. Ближайший к микропиле именуется микропилярным, далее отстоящий — халазальным. На халазальном полюсе три ядра одеваются оболочками. Формируются три Одинаковые клетки. Четвертое ядро вместе с одним из ближайших ядер микропилярного полюса образуют новую двухъядерную клетку — центральную клетку развивающегося зародышевого мешка, которой в будущем уготовлена особая роль. Три остальных ядра микропилярного полюса также одеваются оболочками и все вместе составляют так называемый яйцевой аппарат. При этом две из сестринских клеток приобретают сходную форму, а третья отлична от них: она превращается в женскую половую клетку — яйцеклетку.

Таким образом конечная структура зародышевого мешка включает в себя следующие компоненты: яйцеклетку, две сестринские клетки, называемые синергидам и, центральную двухъядерную клетку и три одинаковые клетки в халазальном полюсе — антиподы. Синергиды и центральная клетка в дальнейшем принимают участие в оплодотворении и последующем развитии зародышевого мешка. Антиподы же берут на себя снабжение зародышевого мешка питательными веществами.

Столь обстоятельное знакомство с развитием и структурой зародышевого мешка необходимо нам для того, чтобы в дальнейшем перейти к описанию святая-святых интимной жизни растения — процессу двойного оплодотворения. Знакомясь с описанным развитием, следует постоянно помнить, что речь идет в данном случае не о становлении одного из органов растения, а о жизни в тканях растения особого, в сущности, организма — гаметофитного поколения, "мамы" того проростка, который появится в будущем из семени.

Рис. 15. В тканях цветка скрытно протекает своя, особенная жизнь гаметофита — полового поколения растения. Развиваясь от одноядерной клетки до семиклеточного и восьмиядерного образования, формируется и подготавливается к двойному оплодотворению зародышевый мешок — гаметофит грушанки

Подчас гаметофит развивается иным путем. У некоторых растений редукционное деление материнской клетки женских спор в семяпочке не идет до конца: ядро клетки делится не два раза, а один; образуются не четыре, а две женские споры; в зародышевый мешок превращается только одна из этих двух дочерних клеток. Структура зародышевого мешка также бывает отличной от описанной выше "классической" — он может состоять не из 8, а, например, из 4 или 16 ядер; клеток-антипод тоже может быть значительно больше, чем три... Но не стоит перечислять эти отклонения далее. В каждом из таких случаев есть или может быть найдено свое объяснение факту. Оно, это объяснение, базируется на особенностях происхождения, образа жизни или развития того или иного конкретного растения, и рассказ о каждом из подобных случаев увел бы нас слишком далеко в сторону. Поэтому ограничимся лишь сказанными выше несколькими строчками да еще восхищенными словами героя крыловской басни:

"Куда на выдумки природа таровата!.."

Растения-изобретатели

Появление в процессе эволюции разнообразных способов опыления при помощи ветра, насекомых и иных посредников помогло цветковым растениям, ведущим прикрепленный образ жизни и лишенным, естественно, возможности непосредственной встречи с партнером в браке, приспособиться к жизни на суше. И не просто приспособиться, а постоянно эволюционировать, совершенствоваться и завоевать всю сушу планеты.

Нам хотелось бы поэтому, чтобы читатель отнесся ко всему, что написано ниже, не просто как к перечислению любопытных или оригинальных механизмов опыления, а рассматривал их, во-первых, с эволюционной точки зрения, а во-вторых, с экологической — в совокупности и гармонии со средой, в которой обитают растения.

Цветок под дождем

Есть истины, которые непреложностью своей подчас словно загораживают то или иное явление от нашего пристального взгляда. Мы, например, слишком хорошо знаем, что красивые и нежные лепестки цветка привлекают насекомых, которые переносят пыльцу с цветка на цветок и тем самым способствуют опылению растений. И чаще всего удовлетворяемся этим, не задумываясь далее...

Но только ли для привлечения насекомых служит венчик цветка?

Нет. Есть у него и другие функции. В частности, защита пыльцевых зерен от излишнего увлажнения. Ведь пыльца очень нежна.

Правда, в некоторых географических районах, иногда очень обширных, цветкам нет надобности в особых приспособлениях, защищающих пыльцу от влаги. В бразильских пампасах, в африканских саваннах или в южноавстралийских степях дождливые сезоны сменяются сухими с той же непременной закономерностью, как у нас зима сменяется летом. Растения там защищают пыльцу просто тем, что зацветают в сухой период года. И потому у обитающих в этих районах эвкалиптов, мимоз и многих других растений в цветках нет механических приспособлений для защиты от влаги.

Но не менее обширны на земном шаре области, где период цветения растений приходится как раз на то время, когда атмосферные осадки выпадают в изобилии. Это относится, например, почти ко всей Европе (исключая лишь юго-восточные ее районы). Растения во время цветения здесь часто смачиваются дождем или росой, окутываются влажным туманом. А порою они неделю и более ожидают наступления солнечной погоды, при которой выбираются из своих убежищ спрятавшиеся от дождя пчелы, бабочки и другие насекомые-опылители. Конечно же, в таких условиях в цветке становятся жизненно необходимыми приспособления, защищающие пыльцу. Причем, они не должны быть помехой для распространения пыльцы ветром или для посещений цветка насекомыми.

Напротив, очень часто одни и те же приспособления служат в дождливую погоду для защиты пыльцы, а в сухую способствуют ее распространению.

Иногда прикрытие создается непосредственно над пыльцой. В других случаях защищается целая группа цветков. Защитную функцию могут выполнять как органы самого цветка, так и всего растения: видоизмененные стенки пыльников, рыльца, кроющие листья и прицветники, а подчас даже просто зеленые листья.

Присмотритесь, например, к липе в пору ее цветения. Цветки ее располагаются так, что к моменту раскрытия пыльников плоские широкие листья дерева служат им надежной крышей.

У бананов цветки ко времени созревания пыльцы оказываются защищенными большими прицветниками. Впоследствии, когда пыльца будет израсходована и надобность в ее защите минует, растение сбросит их.

Круглые желтые цветки купальницы европейской тоже почти ежедневно подвергаются действию дождя или росы. Между тем ее пыльца никогда не отсыревает. Дело в том, что пыльники цветка у нее совершенно закутаны лепестками, располагающимися на оси соцветия в спиральном порядке. Насекомые, охотно посещающие богатые нектаром цветки, должны каждый раз пробивать достаточно плотный покров, образованный перекрывающими друг друга верхними лепестками. Пчелы проделывают это легко, так как лепестки достаточно гибки. Но капли дождя не могут проникнуть внутрь цветка, а скатываются с его поверхности.