Жизнь в почве — страница 34 из 37

м не только ранние овощи, но и другие культуры.

Сегодня, чтобы получить в теплицах нужную для развития растений температуру, в качестве теплоносителя используют воду, нагретую приблизительно до 90 градусов, а основной системой обогрева служат трубопроводы. Затраты на нее (а это 40 километров труб на каждом гектаре) вместе с котельной достигают 40 процентов затрат на сооружение тепличных комбинатов, а расходы на обогрев — половины себестоимости тепличной продукции.

Перспективы использования сбросного тепла побуждают разрабатывать конструкции принципиально новых теплиц: высотных, с обогревом от сухих градирен, гидротеплиц и теплиц-градирен. В последних теплую воду пропускают по их крыше, и, охлаждаясь, она обогревает теплицы и возвращается к энергоагрегатам. Даже зимой температура воздуха в теплицах остается всего на 1–3 градуса ниже, чем у обогревающей их воды.

Расчеты показывают, что отходов тепла обычных и атомных электростанций, а также промышленных предприятий страны достаточно для обогрева не менее 300 тысяч гектаров теплиц. Климатические условия в них будут сродни субтропическим, подчас даже лучше — ведь чаще всего в наших субтропиках невозможно выращивать без укрытия даже неприхотливые виды и сорта цитрусовых. Кроме традиционных овощных, в теплицах можно будет производить немало других ценных растений — таких, как цветочные и ягодные, лекарственные. Часть этой площади можно использовать, причем с высокой отдачей, для ускорения процесса селекции и семеноводства сельскохозяйственных растений.

Орошение теплыми водами открытого грунта даст возможность повысить урожайность культур по сравнению с обычным орошением на 20 процентов и более, а главное — продлить вегетационный период.

Сегодня достижения биологической науки, в том числе использование почвенных микроорганизмов, позволяет не только получать и перерабатывать пищевые продукты или корм для скота, они находят применение и в новых, подчас неожиданных областях. Почвенная микробиология породила не только биотехнологию, но и промышленную биоэнергетику.

Напомним, что Энергетическая программа СССР предусматривает на первом этапе создание материально-технической базы для широкого использования нетрадиционных источников энергии, в том числе энергии биомассы.

Понятие «биомасса», как известно, охватывает все вещества растительного и животного происхождения, продукты жизнедеятельности и органические отходы, образующиеся в процессе их обработки. Частично она используется в качестве кормов и продуктов питания, строительного материала, сырья для промышленности, а также в энергетических целях — путем прямого сжигания или с помощью переработки с получением спиртов и биогаза. Общее количество биомассы, ежегодно образующейся на планете, в несколько раз превышает суммарную годовую мировую добычу нефти, газа и угля.

Производство и переработка продукции сельского хозяйства дают массу отходов: навоз, солома и т. д. Нередко они либо вообще не идут в дело, либо употребляются неэффективно. В городах очень велико количество жидких стоков и твердых отходов. Органические отходы в изобилии появляются при лесозаготовках, лесопилении, деревообработке. Правда, на их базе (но это лишь небольшая их часть) развернуто довольно крупное микробиологическое производство этилового спирта и кормовых дрожжей.

Получать топливо из биомассы можно двумя способами — с помощью термотехнических процессов или путем биотехнологической переработки. К последнему относятся анаэробное сбраживание с выходом биогаза, а также гидролиз с получением этилового спирта или кормовых дрожжей, биоводорода и ряда других продуктов. Отечественный и зарубежный опыт показывает, что наибольшую перспективу открывает биологическая переработка органических веществ в биогаз. Он состоит из 50–70 процентов метана и 30–50 процентов окиси углерода. Его теплотворная способность составляет 4300–6000 килокалорий на кубический метр, что эквивалентно 0,6–0,8 килограмма условного топлива.

Брожение тонны органического вещества дает от 350 до 500 кубических метров биогаза. Процесс протекает непрерывно в реакторах (метатенках) объемом от нескольких кубометров до нескольких тысяч кубометров при температурах от 30 до 35 градусов Цельсия.

Безусловное достоинство такого способа — возможность использовать остаток органического вещества, образующегося в реакторах. Это обеззараженное, без запаха удобрение, для растений более ценное, чем обычный навоз.

На различные технологические нужды в сельском хозяйстве ежегодно расходуется около 50 миллионов тонн условного топлива. Если учесть, что в 1986–1990 годах намечается построить несколько сотен свинокомплексов с годовым откормом многих миллионов свиней, то общий выход жидкого навоза составит в год десятки миллионов кубических метров. Из него можно получить до 1,5 миллиарда кубометров биогаза (что эквивалентно 1 миллиону тонн условного топлива), а кроме того — высококачественные удобрения, содержащие азот в виде аммония (200 тысяч тонн), окись фосфора (61 тысячу тонн), окись калия (84 тысячи тонн).

Предполагается также построить сотни комплексов крупного рогатого скота с откормом более 4,5 миллиона голов. Расчеты показывают, что только благодаря реализации отходов животноводческих комплексов и птицефабрик путем биологической конверсии можно получить дополнительно более, 4 миллионов тонн условного топлива (50 процентов биогаза идет на поддержание процесса брожения), а также высококачественные удобрения в количестве, эквивалентном 3 миллионам тонн в пересчете на обычное минеральное удобрение.

Таковы лишь некоторые из направлений, по которым идет поиск принципиально новых решений, связанных с использованием биологических ресурсов и повышением их качества.

Почвенные животные предупреждают об опасности

Открытие атомной энергии и использование ее безграничных запасов — одно из самых выдающихся достижений науки XX века. Но успехи ядерной энергетики стали и источником серьезной и все растущей озабоченности во всем мире. И дело не только в угрозе атомной войны, способной вообще уничтожить человечество. Огромную опасность представляет и загрязнение биосферы радиоактивными веществами. Вызвано оно рассеиванием в атмосфере, в морях и океанах продуктов радиоактивного распада, проникновением их в почву и накоплением в сельскохозяйственной продукции и промысловых рыбах.

Радиоактивное загрязнение довольно просто и оперативно устанавливают приборы. Но практика показала, что как бы точны они ни были, только биологические индикаторы (растения, животные, микроорганизмы) позволяют перевести физические и химические показатели в величины, имеющие биологический смысл, то есть получить ответ на основной вопрос: пригодна ли та или иная среда для жизни человека.

Как влияет радиация на клетки, ткани и целые живые организмы, каковы методы защиты от нее — этим занимается молодая наука — радиобиология. Одно из ее направлений — радиоэкология. Ее задача — анализ концентрации радионуклидов, изучение закономерностей изменения сообществ и популяций организмов, обитающих в условиях повышенной радиации.

Почвенные животные исключительно благодарный объект для радиоэкологических исследований: многие из них весьма чувствительны к действию радиации, в пищевых цепях они часто являются конечными звеньями и могут концентрировать радионуклиды. Животное население почв регулирует численность вредителей леса, что особенно важно в лесных районах, подвергшихся действию радиации. Тесная связь существует и между степенью радиоактивного загрязнения почв и экологией сельскохозяйственных вредителей в этих почвах. Наконец, почвенные животные — удобнейший биоиндикатор радиоактивного загрязнения территорий, так как численность их велика и достигает многих сотен тысяч особей на один квадратный метр, а характер питания фитофагов, сапрофагов и хищников достаточно постоянен, что позволяет установить пути и количественные закономерности миграции радионуклидов в биогеоценозе.

Почвенная фауна — наименее миграционная часть зооценоза, именно она теснее всего контактирует с радиоактивными загрязнениями и естественными радионуклидами, поскольку на суше все загрязнения, как радиоактивные, так и химические, рано или поздно попадают в почву.


Почвенная фауна и миграция нуклидов

Необходимость разработки биологических мер борьбы с возможными радиоактивными загрязнениями суши заставляет с особым вниманием отнестись к проблеме регулирования и направленной перестройки животного населения почв, изысканию путей интенсификации биологического круговорота веществ с помощью животных для связывания подвижных соединений радионуклидов и локализации очагов загрязнения в условиях естественных природных экосистем.

Одной из форм воздействия на очаг загрязнения могло бы быть расселение и создание условий для массового размножения таких почвенных животных, как кивсяки, которые в значительных количествах накапливают соли кальция и стронция, потребляют растительный опад (а он является одним из самых загрязненных искусственными радионуклидами горизонтов почвы) и в то же время не служат сами пищей для птиц, млекопитающих и хищных насекомых. Поэтому кивсяки могут быть эффективным депо таких радионуклидов, как стронций-90.

Как правило, больше радиоактивного стронция накапливают животные, которые откладывают кальций в покровах для увеличения их прочности — почвенные моллюски, кивсяки, мокрицы. Эти животные с успехом могут использоваться в качестве биоиндикаторов загрязнения среды стронцием-90. В восточной Украине кивсяки и виноградные улитки накапливали этот радионуклид в 100 раз больше, чем его содержалось в дубовом опаде — пище этих животных.

Учитывая, что стронций-90 прочно связывается почвами и не весь включается в круговорот, можно предполагать, что зоогенная, то есть определяемая животными, миграция этого изотопа, во всяком случае, сравнима с вымыванием дождевыми водами или разносом ветром из биогеоценоза. Наибольшее значение здесь имеют почвенные миграции.