Жизнь замечательных устройств — страница 18 из 50



В этой статье на 64 страницах латинского текста Цейзе доказывал и Либиху, и всем сомневающимся, что полученный им продукт не является металлической платиной. В статье приводятся условия эксперимента, рассуждения и детальные описания аналитических методов, применявшихся при установлении формулы продукта, основанные на использовании одобренной Берцелиусом в 1826 году таблицы значений атомных весов (кислороду в ней приписывалась масса, равная 100). В завершении статьи Цейзе делает вывод, что на основании всех анализов продукту можно приписать одну из трех формул:


«…2 PtCI2+ 4H2C + KCl2,

или:

2 PtCl + 2(2H2C + Cl) + KC12

или же:

2(PtCl + 2H2C + Cl) + KCl2»


Тем самым Цейзе подтверждает свой первоначальный вывод о том, что полученное им вещество — не металлическая платина, и помимо благородного металла в его состав входят хлор, углерод, водород и калий.

Шестьдесят четыре страницы привлекли внимание ученых-современников, и, похоже, убедили Либиха в том, что Цейзе получил не металлическую платину, а ее производное. Тем не менее, такого количества страниц все равно было мало, чтобы убедить Либиха в составе соли Цейзе, предложенном самим Цейзе: Либих долго и искренне считал, что в состав соли (а точнее, ее органического радикала) обязан входить и кислород. Либиха не заставили изменить мнение ни очередные анализы, которые, пытаясь убедить своего именитого коллегу, провел Цейзе, ни эксперименты Иоганна Петера Грисса (Johann Peter Griess) и Карла Александра Мартиуса (Carl Alexander Martius), проделанные спустя три с небольшим десятилетия после первого синтеза соли Цейзе. В 1861 году Грисс и Мартиус опубликовали работу, в которой не только подтвердили определенный Цейзе в 1830 году количественный состав соли, но и показали, что при ее термическом разложении выделяется этилен. Основной вывод их работы –


«…полученные результаты полностью противоречат взглядам Либиха, полагающего, что в состав этого соединения входит кислород в составе радикала C4H5O…» (J. P. Griess, C. A., Martius, Compt rendus.,1861, 53, 922–925; Annalen der Chemie (Liebig), 1861, 120, 324–327).

Либих упорно стоял на своем: результаты экспериментов Цейзе и Грисса с Мартиусом любопытны, но неубедительны, ибо не может быть такого, чтобы в соединении, которое получено с использованием спирта, в соединении, которое называется «солью», отсутствовал кислород. Дело дошло до того, что дискуссия Цейзе и Либиха перекочевала на страницы учебников, и в разных книгах XIX века, предназначенных для обучения студентов, приводились различные формулы соли Цейзе. Так, в малоизвестном учебнике по органической химии, который Вильгельм Кристофер Цейзе написал для студентов датских университетов в последний год своей жизни, и в более известном труде Берцелиуса «Lehrbuch der Chemie» соль раздора приводилась без кислорода, а вот Либих в своих трудах «Annalen der chemie und pharmacie» упорно пририсовывал ей кислород.



Точку в вековом споре о составе и строении соли Цейзе поставили только в XX веке. В 1930-е годы анализы, проведенные на основании уточненных атомных масс и с помощью оборудования, более совершенного, чем инструменты для анализа, доступные Цейзе и его современникам, установили качественный состав соли Цейзе — K[PtCl3(CH2=СH2)]H2O. Все же стоит признать, что Либих был прав насчет кислорода, но этот кислород входит не в состав органического фрагмента, а принадлежит кристаллизационной воде.

Строение же соли Цейзе, равно как и других комплексов переходных металлов, было предложено только в 1950-е годы, когда вышла статья Майкла Дьюара «О теории строения π-комплексов» (Bulletin de la Société Chimique de France, 1951, 18, C. 79), в которой он, а затем и подключившиеся к разработке модели нового типа (по тем временам) химической связи Джозеф Чатт и Ли Дункансон разработали синергетическую модель связывания непредельных соединений с переходными металлами, известную в наши дни как модель Дьюара-Чатта-Дункансона, или «модель ДЧД».

В наши дни сад химии π-комплексов переходных металлов бурно растет и обильно плодоносит. Среди его плодов — каталитическое получение органических веществ, катализ некоторых типов полимеризации и многое другое. Тем не менее, глядя на многообразие устойчивых и короткоживущих металлоорганических соединений π-типа, мы должны вспоминать, что первое семечко бросил в землю, пусть и случайно, член Датской академии наук, кавалер ордена Даннеброг Вильгельм Кристофер Цейзе.


1844. Аппарат Киппа

Первым работающим химическим агрегатом, который я увидел в своей жизни, был аппарат Киппа. Конечно же, поскольку и мама и папа имели отношение к химии, временами дома появлялись всякие пробирки и колбы, но чаще всего транзитом — из университета в помощь школе. Но всё же то, как идёт химический эксперимент по получению газов, был впервые продемонстрирован мне на примере получения углекислого газа путём растворения мраморного лома в кислоте.


Думаю, что аппарат Киппа видели все читатели, возможно, некоторым посчастливилось видеть, как и мне, в работе, может быть, есть и тот, кто работал на нём. Думаю, что именно коническая колба и аппарат Киппа — чем-то похожее на кальян устройство, состоящее из трёх стеклянных сфер или полусфер, чаще всего ассоциируются с химической посудой у далёкого от химии человека. Так как же появилось в лабораториях это, безусловно, замечательное устройство?

В XIX веке скорость накопления химических знаний, разработки новых методов стала возрастать. Двигателями, которые способствовали ускорению прогресса в химии, была не только промышленность, которой требовались новые материалы, но и необходимость создания новых методов анализа для выявления фальсифицированных материалов и продуктов питания: медленно, но неуклонно эра пневматической химии заканчивалась, уступая эре аналитической химии. К 1840-м годам уже были разработаны основные принципы анализа неорганических соединений, в частности — разделение металлов на аналитические группы в соответствии с их поведением в реакциях со стандартными реагентами. В те времена была принята сероводородная классификация металлов, их распределяли по аналитическим группам, основываясь на том, дают (или не дают) они осадки с сероводородом в кислой среде. Баллонов для хранения газа в лабораторных условиях тогда еще не изобрели, а значит, что перед каждым анализом сероводород нужно было получать. То есть требовался надёжный способ получения этого газа, в ходе которого, помимо прочего, желательно было бы обратимо останавливать и запускать образование H2S. Аналитики всей Европы пытались решать проблему доступности сероводорода, разрабатывали установки для его получения, описывая в своих трудах или учебниках. Один из самых простых аппаратов того времени разработал немецкий химик-аналитик Карл Ремигий Фрезениус — создатель сероводородной классификации. Однако и для этого самого «простого» прибора описание составных элементов занимало несколько страниц, и работать на нём было крайне непросто.



Элегантное решение вопроса получения сероводорода (как и многих других газов) было найдено в 1844 году. В этом году голландский фармацевт Петер Якоб Кипп из города Делфт составил чертежи простого аппарата для получения сероводорода, водорода и других газов. Сам Кипп, определяя содержание мышьяка во внутренних органах подопытных животных, сталкивался с необходимостью проведения «реакции мышьякового зеркала» — восстановления производных мышьяка водородом, — но существующие устройства для получения водорода в лаборатории его не устраивали опять же из-за сложности в работе и громоздкого дизайна. По одной из версий появления изобретения, Киппа вдохновила конструкция огнива Дёберейнера. Кипп попросил известного немецкого стеклодува Генриха Вильгельма Гейслера (который первым изобрёл и начал использовать на практике стеклодувную горелку, в которую воздух подавался под давлением) изготовить аппарат по чертежам. Первый блин оказался комом, устройство оказалось слишком хрупкое и неудобное в использовании, однако второй прототип, который был создан в результате совместного мозгового штурма Киппа, имевшего практический опыт работы в лаборатории, и прекрасно разбиравшегося в стеклянных приборах Гейслера, в том или ином варианте мы можем видеть в лабораториях и сейчас. Воодушевлённый успехом, Кипп организовал маленькую фирму по производству аппаратов, ну а далее они начали своё триумфальное шествие по лабораториям. Самый древний из аппаратов Киппа, изготовленный в период где-то между 1845 и 1875 годами, в настоящий момент находится в Музее Бургаве, Голландия, город Лейден.



Аппарат Киппа состоит из колбы-реактора с резервуаром; сферической воронки с длинной трубкой; газоотводной трубки и ловушки для улавливания паров кислоты (например, соляной). Колба-реактор имеет верхнюю шарообразную часть с отверстием, в которое вставляется газоотводная трубка, снабженная краном или зажимом, и нижний резервуар в виде полусферы. Нижний резервуар и колба-реактор разделены прокладкой с отверстием, через которое в нижний резервуар проходит длинная трубка воронки, доходящая почти до дна. Раствор в нижнем резервуаре прибора служит затвором, препятствующим выделению газа обратно через воронку во время опыта. Нижний резервуар обычно имеет отверстие, закрытое притёртой пробкой: через это отверстие после использования прибора сливают отработанную жидкость.

Газовый аппарат Киппа очень прост в использовании. В его среднюю емкость помещаются твёрдые реагенты (металл для получения водорода, пирит или другие сульфиды для получения сероводорода, мрамор для получения углекислого газа и т. д.). Затем при открытом кране или зажиме в верхнюю воронку заливается раствор реагента. Когда уровень жидкости достигает вещества на прокладке, начинается химическая реакция с выделением газа. При закрывании крана давление выделяющегося газа выдавливает жидкость из реактора в верхнюю часть воронки. Реакция прекращается. Открывание крана приводит к возобновлению реакции. Таким образом, аппарат Киппа относится к аппаратам автоматического действия. Получать газы с его помощью очень просто, поэтому сотни и тысячи аппаратов Киппа до сих пор продаются по всему миру.