Жизнь замечательных устройств — страница 27 из 50

жидкости в запаянный стеклянный контейнер и ставил под заполненную ртутью трубку. Всё это сооружение нагревали на жаровне, от увеличения внутреннего давления стеклянный контейнер разбивался, высвобождая пары, объём которых измеряли по изменению высоты столба ртути. Необходимость учитывать влияние температуры на результаты измерения и привела к тому, что Гей-Люссак вывел свой газовый закон.



В 1826 году Жан-Батист Дюма разработал более гибкий метод определения соотношений вес/объём, который можно было применять для работы с веществами, реагирующими с ртутью, что позволило добиться определённых успехов. Правда, Дюма неоднократно заявлял с опасением, что из его современников только физики пытаются определять атомные веса, в то время как химики были слишком увлечены получением новых веществ. Это было похоже на часовую бомбу, заложенную под фундамент химии. Отсутствие точной информации об атомных весах (говоря современным языком — атомных массах) не позволяло однозначно определять состав молекул, в особенности органических. В 1861 году Август Кекуле заметил, что в литературе имеется девятнадцать вариантов формулы уксусной кислоты. Кризис органической химии, да и химии вообще, наступил, и причиной кризиса было именно разночтение в атомных массах элементов.



Чтобы сократить число формул уксусной кислоты, а также для того, чтобы навести порядок в совместных делах, 3 сентября 1860 года ведущие химики собрались в Карлсруэ, заложив тем самым традицию решать общие проблемы, собираясь на международные конференции, причем проводить такие конференции в местах, где можно совмещать решение научных задач и приятное времяпрепровождение (как-то не припомню ни одной международной конференции химиков, проводившейся в декабре в американском Фербенксе на Аляске, нашей Кандалакше, канадском Саскатуне или, скажем в Могадишо в любое время года). На конференции итальянский химик Станислао Канниццаро произнес пламенную речь, в которой попытался открыть глаза коллегам на труды своего земляка Амедео Авогадро, который ещё в 1811 году предположил, что молекулярную массу можно вычислить, используя значение плотности паров вещества. Отношение к пламенной речи Каниццаро было различным: кто-то посчитал высказанные идеи упражнениями в нумерологии, каковыми, например, считались составленные Дёберейнером триады элементов, для других это было откровением. Вскоре после конгресса в Карлсруэ плотность паров стала важнейшей характеристикой вещества, её было необходимо указывать при описании нового соединения. Тем не менее, пока один молодой химик, воодушевлённый новыми идеями химии, не разработал новый метод определения этого параметра, измерение плотности паров вещества было делом, связанным с большим количеством трудностей.



Виктор Мейер родился в Берлине в еврейской семье в 1848 году, он учился химии у Роберта Бунзена и получил докторскую степень в возрасте 19 лет. В двадцатитрехлетнем возрасте Мейер присоединился к работавшей в Цюрихе группе Йоханесса Висцелиуса. Работая в Цюрихе, помимо всего, Мейер доказал, что глюкоза проявляет свойства альдегида, изучал нитроалканы, обнаружил изомерию оксимов и выделил тиофен из недостаточно очищенного образца бензола, применявшегося, однако, для демонстрационных экспериментов. Мейер первым обнаружил, что объёмные группы атомов могут замедлять химические реакции, ввёл понятия «стереохимия» и «дипольная молекула». Когда Мейер начал исследовательский проект, связанный с изучением свойств большого количества органических и неорганических соединений, он столкнулся с необходимостью измерения плотности паров. Его не устроил метод, ранее предложенный Дюма, и взамен он решил разработать свой собственный подход.

Мейер предложил следующий способ: навеску вещества помещали в стеклянную трубку, оборудованную боковым отводом, соединенным с газовой бюреткой, уровень жидкости в которой уравновешивался жидкостью в уравнительной склянке. Трубку запаивали или закрывали герметичной пробкой, после чего погружали в водяную или масляную баню. Вещество испарялось, и его пары вытесняли воздух из газовой бюретки, объём паров измерялся, и при знании точной массы навески определение плотности паров было простым делом. С помощью аппарата Мейера можно было значительно ускорить измерение столь важной для химиков того времени экспериментальной характеристики вещества.

Сам Мейер, бесспорно, был трудоголиком. Он изнурял себя работой, что не могло не приводить к частым нервным срывам. Срывы, однако, не мешали ему двигаться по карьерной лестнице — сначала он стал заведующим кафедрой химии в Геттингене, а затем сменил своего учителя Бунзена на посту заведующего кафедрой химии в Гейдельберге. Тем не менее, нагрузка была столь сильной, что в 1897 году Мейер написал прощальное письмо-извинение своей семье и принял цианистый калий. К моменту самоубийства, метод измерения плотности паров по Мейеру стал элементом лабораторного студенческого практикума.



В наши дни, отправляя статью, описывающую синтез нового соединения, в научный журнал, мы уже не приводим значения плотности паров, появились другие, более точные методы установления состава и строения вещества. Однако относительная или абсолютная плотность паров встречается в заданиях химических олимпиад школьников, и, пользуясь этой величиной, участники конкурсов de facto делают то, что когда-то делали Канниццаро и Мейер — определяют молекулярную массу неизвестного (в смысле зашифрованного в условии задачи) вещества, правда, школьникам не приходится находить эти параметры экспериментально.


1879. Экстрактор Сокслета

За работой большинства химических устройств наблюдать не очень увлекательно. Холодильник Либиха конденсирует пары, и процесс конденсации нельзя назвать интересным и занимательным (главное помнить, что при очистке жидкости с помощью перегонки, для которой и нужен холодильник, в приёмник должно капать 1–2 капли в секунду).



Еще менее увлекательно отсоединение холодильника от водных коммуникаций. Один раз во время попытки освободить холодильник от присохших шлангов, я не рассчитал силу и получил сомнительную возможность наблюдать расширившиеся от непонимания глаза врачей, зашивавших меня в неотложной хирургии, которые пытались осмыслить мой ответ на вопрос: «Где же Вам так не повезло порезаться?». Потеряв к тому времени пару стаканов крови, я не был готов строить ответы, используя в речи завязку, кульминацию и развязку, и ответил просто: «Порезался холодильником». По глазам эскулапов, я, правда, быстро понял, что они уже вычисляют степень опасности обычно расположенного на кухне белого шкафа с морозом и продуктами внутри, и конкретизировал: «Холодильником Либиха», что, впрочем, не добавило людям в белых халатах понимания причин моей резаной травмы. Вот и пришлось коротать время, под наложение швов, освежая в памяти штопающих меня людей забытые после мединститута основы техники лабораторных работ и техники безопасности в химической лаборатории.



Тем не менее, одно стеклянное устройство стоит несколько особняком — в рабочем состоянии оно вполне может на некоторое время парализовать работу химической лаборатории (особенно, если в лаборатории главным образом работают студенты и аспиранты) — экстракционный аппарат Сокслета. Это устройство состоит из стеклянного резервуара, расположенного между колбой с растворителем (ниже резервуара) и холодильником (выше резервуара). Экстрактор Сокслета (часто просто «Сокслет») позволяет экстрагировать вещества из твердого образца в жидкость, используя при этом небольшие объёмы растворителя, который, благодаря схеме устройства, циркулирует и мелкими порциями омывает пробу, вещество из которой экстрагируется. Растворитель для экстракции нагревают в колбе до кипения, его пары конденсируются в холодильнике, омывают образец, вымывая из него целевое вещество (или вещества), раствор через специальный отвод попадает в колбу, и все повторяется снова и снова. Смотреть на работающий Сокслет действительно весьма интересно, тем более, что, если речь не идет о лаборатории, основное направление работы которой связано с извлечением веществ из природных источников, экстрактор Сокслета запускается не часто.

Экстрактор Сокслета получил свое имя благодаря Францу Риттеру фон Сокслету, немецкому химику бельгийского происхождения, родившемуся 12 января 1848 года в городе Брюнн на территории Австро-Венгерской Империи (ныне этот город Брно в Чехии). Он изучал химию в университете Лейпцига, в нём же защитил диссертацию, после чего стал ассистентом в Институте сельскохозяйственной химии. Поработав в должности ассистента год, он получил должность кафедры сельскохозяйственной химии в Вене, где оставался до 1879 года, пока не принял предложение занять одновременно две должности — профессора земледельческой химии в Высшем техническом училище в Мюнхене и директора Баварской сельскохозяйственной опытной станции. Сокслет работал в Мюнхене до своей смерти в возрасте 78 лет в 1926 году.

Большая часть исследовательской деятельности Сокслета была посвящена изучению молока. Он первым описал молочный сахар лактозу, ту самую, которую могут переваривать далеко не все взрослые люди. Сокслет выделил и описал свойства основных белков из состава молока — казеина, альбумина, лактопротеина и глобулина. Именно Сокслет первым предположил возможность применения только что изобретённого процесса пастеризации к молоку и экспериментально доказал свое предположение, так что молоком, которое стоит в бутылках и не прокисает, мы обязаны Сокслету. Кстати, иронично, но, если в средние века о появлении ведьмы или нечистой силы судили по скисшему молоку, то сейчас некоторые граждане приписывают не менее инфернальные свойства молоку с длительным сроком годности. Спустя пять лет после разработки процесса пастеризации молока Сокслет предложил устройство для стерилизации стеклянной молочной тары.

Именно в Вене Сокслет разработал свое устройство для экстракции: он использовал его для извлечения жиров из твердых молочных продуктов — сыров и масел. В 1879 году Сокслет описал конструкцию своего устройства в научном журнале, и новый аппарат быстро начал применяться в разных областях химии — сначала в биохимии и пищевой химии, потом в химии продуктов нефтепереработки. А уже в XX веке аппарат Сокслета стал применяться в химии полимеров — во всех областях химии, в которых требуются процессы экстракции.