[12]. Эту свою работу я сообщил на семинаре Кагана, но никакого внимания она там не привлекла, хотя, как я думаю, она всё же содержала важное методическое достижение.
Аналогичное достижение в области топологии несомненно привлекло бы внимание Александрова. Внимательное отношение к самостоятельной деятельности студентов было характерно для школы Н. Н. Лузина, из которой вышел Александров.
К началу четвёртого курса П. С. Александров вернулся из-за границы и привёз с собой ещё профессора фрейлейн Эмми Нётер. И я вновь вернулся к топологии и, кроме того, слушал лекции фрейлейн Нётер по современной алгебре. Лекции эти поражали своей отделанностью, отличались в этом смысле от лекций Александрова, но не были засушенными и казались мне очень интересными. Лекции свои фрейлейн Нётер читала по-немецки, но они были понятны ввиду необычайной ясности изложения.
На первую лекцию этого известного немецкого математика собралось огромное количество народа. Здесь произошло совершенно неожиданное происшествие: нижняя юбка фрейлейн Нётер начала постепенно сползать. Всё внимание слушателей было сосредоточено на этом. В полной тишине происходило сползание юбки, а фрейлейн Нётер героически продолжала читать лекцию. Лекции фрейлейн Нётер существенно отразились на моём математическом мировоззрении, что сказалось прежде всего на дипломной работе, где я заново переизложил в усовершенствованном виде свои результаты по теореме двойственности 2-го курса, сильно усовершенствовал их как в геометрическом, так и в алгебраическом направлениях. В дальнейшем я очень охотно обучал своих аспирантов абстрактной алгебре. И один раз даже читал обязательный курс линейной алгебры для студентов. Курс этот был построен в стиле Нётер.
Закончив четвёртый курс университета и защитив дипломную работу, я тем самым закончил университет. В те времена молодёжь не мучили долголетней учёбой. В средней школе полагалось учиться девять лет, в университете — четыре года. Мне и сейчас кажется, что этого достаточно. Во всяком случае, к концу четвёртого курса я уже получил острое отвращение к сдаче экзаменов. Настолько острое, что от сдачи одного из экзаменов я уклонился, применив «недостойный» приём. Я упросил Александрова вписать мне в зачётную книжку сдачу экзамена по конечным разностям, о которых он читал, обещая выучить потом. Но так никогда и не выучил.
После университета
Закончив университет, я в течение двух лет проходил университетскую аспирантуру под руководством П. С. Александрова.
Это было время решительных преобразований. Старая система аспирантуры с многочисленными огромными экзаменами разрушилась, новая ещё не была заведена. Таким образом, в аспирантуре я просто занимался математикой, да ещё получал 175 рублей стипендии, что радикально меняло моё материальное положение.
Окончание аспирантуры за два года вовсе не означало, что я выполнил что-то досрочно или защитил диссертацию. Диссертаций тогда вовсе не было, просто начальство решило, что с меня хватит. И перевело меня в сотрудники Института математики при университете на зарплату 170 рублей. Так что я даже потерпел некоторый материальный ущерб.
Правда, уже после первого года аспирантуры я стал доцентом университета с зарплатой 47 рублей и читал лекции совместно с профессором О. Ю. Шмидтом. Лекции были посвящены абстрактной алгебре и теории групп. Читали мы их по очереди. Однако на каждой лекции присутствовали оба.
В мои обязанности входило утром в день лекции сообщить О. Ю. Шмидту о предстоящей лекции. Дома телефона у меня не было, моя мать ходила в аптеку и звонила Шмидту. До сих пор помню, какой страх я испытал перед своей первой лекцией. Когда-то очень давно я слушал впервые Андроникова, он как раз рассказывал о своём страхе перед первым выступлением на эстраде. Мои переживания перед первой лекцией были очень похожи на его переживания перед первым выступлением. Разница заключалась только в том, что, когда я заговорил перед аудиторией, мой страх мгновенно исчез и всё внимание было сосредоточено на том, что я говорю.
В течение многих лет я испытывал некоторую тревогу, похожую на страх, перед каждой своей лекцией. И всегда страх мгновенно исчезал, как только я приступал к лекции. Позже эти страхи прекратились. Даже лекции на английском языке я воспринимал без тревоги. Помню, как спокойно я шёл на свой пленарный доклад на Международном конгрессе в Ницце в 1970 году. Я спокойно делал его на английском языке.
Различного рода страхи, тревоги, связанные с профессиональной работой, всегда преследовали и продолжают преследовать меня теперь. Каждое новое начинание вызывает тревогу. Неясно, справлюсь ли я с ним. Незаконченная научная работа вызывает страх, что я вообще не сумею её закончить и несколько лет тяжёлого труда пропадут даром. Законченная научная работа вызывает страх тем, что в ней может обнаружиться ошибка.
Все эти страхи перед возможной неудачей составляют тяжёлую эмоциональную сторону профессиональной работы. И в то же время это является важнейшим стимулом для хорошего выполнения работы. Страх перед неудачей вынуждает меня самым тщательным образом подготавливать всякое мероприятие, а тщательная подготовка приводит к тому, что работа выполняется хорошо, что приносит огромное моральное удовлетворение. Только хорошо выполненная работа доставляет радость! Выполненная небрежно, она вызывает отвращение и постепенно вырабатывает в человеке аморальное отношение к труду.
Я склонен думать, что добросовестное отношение к труду является прирождённым свойством каждого человека, а чтобы развить в нём аморальное отношение к труду и склонность к халтуре, нужно приложить большие усилия. Для этого нужно создать особенно неблагоприятные условия работы. Эти неблагоприятные условия могут выражаться, например, в противоестественно низкой оплате труда или в том, что плоды труда используются столь нерационально, что практически идут впустую. И то, и другое у нас имеется в достаточной мере.
Окончив университет в 1929 году и освободившись тем самым от экзаменов, так как в аспирантуре их не было, я все свои силы направил на научную работу, которую сразу же повёл с очень большим успехом. Каждый год я публиковал по две-три работы, причём по меньшей мере одна из них была действительно замечательной. В первые годы тематика этих работ была тесно связана с моими студенческими работами или вытекала из них. При этом иногда, исходя из старых задач, я приходил к совершенно новым.
Стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства, я пришёл к необходимости рассмотрения группы характеров произвольной коммутативной счётной группы, т. е. столкнулся с T-теорией топологических групп, с топологической алгеброй. В дальнейшем это привело меня к построению общей теории топологических групп.
Я пришёл к топологической алгебре, стремясь доказать теорему двойственности Александера для произвольного компактного подмножества евклидового пространства. Не знаю, как пришёл к ней А. Н. Колмогоров, но он сформулировал мне следующее общее положение: «Математический объект, в котором одновременно определены алгебраические и топологические операции, причём алгебраические операции непрерывны в заданной в нём топологии, должен быть сравнительно конкретным». На этом пути Колмогоров пытался построить аксиоматику пространств постоянной кривизны, т. е. единую аксиоматику для пространства Евклида, Лобачевского и Римана.
Передо мной он поставил следующую конкретную задачу: доказать, что всякое связное локально компактное топологическое тело является либо телом действительных чисел, либо телом комплексных чисел, либо телом кватернионов. Для коммутативных тел, т. е. полей, я решил её очень быстро — за неделю или две. И сообщил об этом П. С. Александрову. И вот мы трое собрались в маленькой комнате Павла Сергеевича в Старопименовском переулке. Колмогоров с оттенком иронии сказал: «Ну что же, Лев Семёнович, я слышал, вы решили мою задачу? — Расскажите!» Я начал рассказ, и первое же моё утверждение Колмогоров объявил неверным. Но я в нескольких словах объяснил ему его ошибку. Колмогоров сказал: «Да, да, вы правы! По-видимому, задача, которую я вам поставил, не так трудна, как я думал».
Потом я решил задачу и для случая некоммутативных тел, но это заняло у меня уже около года. Колмогоров тщательно отредактировал эту мою работу и устроил в ней 33 леммы. В таком виде она и была опубликована. Я и сейчас считаю этот мой результат в числе лучших моих достижений[13].
С Колмогоровым я познакомился летом 1929 года в Гаграх, где мы с матерью провели целых два месяца. Я часто встречался там с Александровым и Колмогоровым, Во всяком случае, мы очень часто купались вместе. Александров и Колмогоров приехали в Гагры не одновременно. Сперва приехал Александров и стал ждать Колмогорова, который шёл через перевал, притом совершенно один, что очень беспокоило Александрова и меня. Беспокойство это переросло в мучительную тревогу, когда Колмогоров не явился к назначенному сроку.
Александров за несколько лет до этого потерял своего друга, Урысона, при трагических обстоятельствах. Урысон утонул в Атлантическом океане во время сильного прибоя на глазах у Александрова. В Гаграх Александрову чудилась гибель только что обретённого нового друга. Колмогоров опоздал на несколько дней. Оказалось, что при переходе через перевал он уронил сумку с документами в пропасть и не мог её достать. Когда он ночью спустился в Сочи, то женщина-милиционер задержала его как подозрительную личность и отправила в дом предварительного заключения, где он просидел четыре или пять дней, тщетно добиваясь, чтобы его выпустили или навели о нём справки. Наконец это удалось сделать, и тогда ему была возвращена свобода.
Топологическая алгебра, точнее, теория топологических или непрерывных групп была предметом моей научной и педагогической деятельности в течение нескольких лет. Большой успех в этой области был достигнут мною на основе только что появившейся тогда замечательной работы венгерского математика Хаара. В ней Хаар построил на локально компактной топологической группе инвариантную меру. Это позволяло строить и решать на группе интегральные уравнения, так что можно было применить данную ранее Германом Вейлем теорию представлений компактных групп Ли. Работа Хаара была опубликована в американском журнале «Annals of Mathematics», где членом редакции был фон Нейман. Последний сразу же воспользовался замечательным результатом Хаара,