Журнал «Парус» №80, 2020 г. — страница 12 из 48

Любопытно, что похожая логика затем появится и у либералов с радикалами на «незыблемость» прогрессивных экономических теорий и политических идей века. С такой точки зрения будут критиковать и Достоевского [см.: 17; 22; 27]. Сам же писатель заметит устами рассказчика в «Подростке», что «здравый смысл» отличается от «реализма»: «Реализм, ограничивающийся кончиком своего носа, опаснее самой безумной фантастичности, потому что он слеп» [10, с. 115]. В скобках можно заметить, что «здравый смысл» у Достоевского (да и у некоторых других русских писателей) зачастую приобретает отрицательные коннотации, связанные с ограниченностью и поверхностностью отсылающего к нему человека [см.: 7, с. 45–46; 42, с. 133]. Широко известны и другие высказывания Достоевского о «реализме»: «<…> то, что большинство называет почти фантастическим и исключительным, то для меня иногда составляет самую сущность действительного. Обыденность явлений и казенный взгляд на них, по-моему, не есть еще реализм, а даже напротив» [13, с. 19]; «Нам знакомо одно лишь насущное видимо-текущее, да и то по наглядке, а концы и начала – это все еще пока для человека фантастическое» [11, с. 145].

«Концы и начала» были фантастичны и для эвклидовой геометрии, расширять понятия которой начинает в 1830-е годы уже новая, неэвклидова. Одним из ключевых в развитии этого методологически нового подхода стало имя Н.И. Лобачевского, которому удалось при помощи «неевклидовой» геометрии как получить «уже известные интегралы, что означало выполнение новой теорией функции объяснения известных математических фактов» [28, с. 11–12], так и предсказать новые. И вновь напрашивается ассоциация с оценкой Достоевским своего художественного метода: «Совершенно другие я понятия имею о действительности и реализме, чем наши реалисты и критики <…> Ихним реализмом – сотой доли реальных, действительно случившихся фактов не объяснишь. А мы нашим идеализмом пророчили даже факты. Случалось» [12, с. 329].

Симптоматично, и тем отчасти может быть дополнительно оправдана проведенная аналогия, что как против Достоевского («Это такой мутный источник, которым не следует пользоваться» [54, с. 742]), так и – причем не менее яростно – против Лобачевского и его последователей («совершенно бессмысленная чепуха» [55, с. 185] – о математике Г. Гельмгольца) обрушился Н.Г. Чернышевский, смотря на научные открытия «эвклидовым», совершенно уверенным в собственной непогрешимости умом. Парадоксально, но и по-своему закономерно, что, позиционируя себя передовым радикалом, Чернышевский на деле оказывается отстающим, не способным понять новые научные открытия, поскольку они, вероятно, неизбежно пошатнули бы его самоуверенность в решении социальных проблем. Однако стоит заметить, что если взгляды критика на математику уже давным-давно стали фактом истории и потеряли актуальность, то в гуманитарной сфере, в литературоведении и преподавании литературы наблюдается порою явное запаздывание [см.: 3].

Кузнецова в реакции Чернышевского на положения неэвклидовой геометрии усматривает пример «феномена запаздывания» [28, с. 15] общества, не сразу готового принять и осмыслить научные открытия из-за кажущейся несовместимости их со «здравым смыслом». Исследовательница видит важную заслугу Достоевского в том, что он сумел постичь суть «неэвклидовой» геометрии (как полагает Кузнецова, при помощи С.В. Ковалевской), и уже «после великого произведения Ф.М. Достоевского («Братьев Карамазовых». – Ю.С.) и широкая общественность проявила готовность к восприятию новых идей» [28, с. 16].

Однако насколько правомерно писать о такой «вторичности» Достоевского? Полностью ли дело в математических открытиях, и действительно ли они изменили мировидение писателя, ведь истоки его философии гораздо древнее? Еще до возможных разговоров с Ковалевской о математике Достоевский пишет «Записки из подполья», герой которых восстает против «законов» общепринятой науки, хотя еще без ссылки на Эвклида. Более того, в свою очередь Достоевский окажет воздействие на развитие не только философской, но и научной мысли – широко известно признание Эйнштейна в том, что именно Достоевский оказал на него ключевое влияние [см.: 4]. В свете этих соображений более взвешенной представляется позиция целого ряда исследователей, указанных в начале статьи, согласно которой открытия в математике только подтверждали мировоззрение писателя, но не влияли на него.

Интересно, что с развитием математики и философского ее осмысления появляются и новые суждения об «арифметике» Достоевского. Так, В. Губайловский соотносит взгляды писателя с возникшим уже в конце XX века «математическим платонизмом», согласно которому, по определению Р. Пенроуза, «математики действительно открывают истины где-то уже существующие, реальность в значительной степени независима от их деятельности» [7, с. 66–67]. Достоевский, с точки зрения Губайловского, «относится к математическим объектам так же, как Пенроуз, – он принимает реальность бесконечности, он видит треугольник Лобачевского» [7, с. 67], и при этом «стремится к последней строгости и аксиоматической точности в рассуждении» [7, с. 67].

Исследователей интересуют и конкретные числа в творчестве Достоевского [например: 5; 23; 48]. В.Н. Топоров, занявшись статистическим подсчетом чисел в «Преступлении и наказании», нашел их «огромное количество» [49, с. 209]. По мнению исследователя, Достоевский, с одной стороны, подобно Рабле «десакрализует, дисгармонирует архаичные представления об элементах числового ряда» [49, с. 209], но с другой – у него «обнаруживаются и следы мифопоэтической концепции числа» [49, с. 210]. В результате анализа многих числовых рядов в романе Топоров приходит к выводу: «<…> сакральный аспект чисел, противопоставленных профаническим числам, годным лишь для “низкой жизни”, снова возвращает нас к архаичным схемам мышления и, в частности, к практике ритуальных измерений основных параметров мира. И у Достоевского число введено в мир и определяет не только размеры, но и высшую суть его» [49, с. 211; курсив Топорова. – Ю.С.].

Нужно отметить, что проблема связи Богопознания и математики возникла еще задолго до Достоевского: в античные времена ярчайшим ее представителем был Пифагор, в христианской культуре к математическим формулам в их связи с доказательством бытия Божия обращались Фома Аквинский [52, с. 95], Николай Кузанский [33, с. 64–66], Аврелий Августин, Рене Декарт и другие мыслители [см.: 4; 32]. В целом традиция доказательства бытия Бога через незыблемость математических исчислений характерна именно для католицизма. Православию же больше свойственна иррациональность, выход за пределы формальной логики. Показательно, например, что Николай Кузанский – пусть не прямо, но косвенно – выступил против томизма, «вышел за пределы аристотелевской логики, а также космологии и физики» [44, с. 13], именно благодаря тому, что «побывал в православной Византии, где имел возможность читать греческие рукописи и познакомился с неоплатонизмом» [4, с. 34].

Как замечает В. Губайловский, «и Спиноза, и Декарт, и Лейбниц, и Шеллинг предпринимали попытки сведения философского рассуждения к математической форме», но эти пробы, по мнению исследователя, «выглядят не слишком убедительно», в частности, поскольку «объекты, которыми оперируют философы, – содержательны», а «если в доказательство включается содержательная интерпретация, это сразу приводит к парадоксу» [7, с. 54]. Замечено это было уже в XIX веке, но тогда еще не представлялось столь самоочевидным. Так, В.Ф. Одоевский в «Русских ночах» пишет о ложности «искусственных систем, которые, подобно гегелизму, начинают науку не с действительного факта, но, например, с чистой идеи, с отвлеченияотвлечения» [34, с. 136; курсив Одоевского. – Ю.С.].

В науке XX века (в том числе в так называемых «точных» науках) наблюдается массовый отход от казавшихся ранее незыблемыми «очевидностей». Например, о. П. Флоренский в работе «Анализ пространственности <и времени> в художественно-изобразительных произведениях» развил «анти-кантовскую» гипотезу Н.И. Лобачевского о том, что «разные явления физического мира протекают в разных пространствах и подчиняются, следовательно, соответственным законам этих пространств» [51, c. 82]. Рассуждая о «кривизне» пространства, Флоренский теоретически обосновал условность известного определения прямой как «кратчайшего расстояния между двумя точками» [см.: 51, c. 81–110].

Об абстрактности, и потому условности, научных «истин» размышляет А.Ф. Лосев в «Диалектике мифа», говоря о «мифологичности» науки и заявляя, что «мифологична» «не только “первобытная”, но и всякая» [29, c. 45] наука. Так, вся «механика Ньютона построена на гипотезе однородного и бесконечного пространства» [29, c. 45], что Лосев прямо называет «мифологией нигилизма», ибо этот «однородный» ньютоновский мир «абсолютно плоскостен, невыразителен, нерельефен. Неимоверной скукой веет от такого мира» [29, c. 45]. «Что это как не черная дыра, даже не могила и даже не баня с пауками, потому что и то и другое все-таки интереснее и теплее и все-таки говорит о чем-то человеческом», – пишет далее Лосев, прямо отсылая к представлениям Свидригайлова о «вечности» [9, с. 221]. Для русского философа открытый Эйнштейном «принцип относительности», помимо прочего, «снова делает возможным <…> чудо» [29, c. 48]. Лосев подчеркивает (выделяя курсивом), что «сущность чистой науки заключается только в том, чтобы поставить гипотезу и заменить ее другой, более совершенной, если на то есть основания» [29, c. 53]. И потому «дело физика показать, что между такими-то явлениями существует такая-то зависимость. А существует ли реально такая зависимость и даже само явление, будет ли или не будет существовать всегда и вечно такая зависимость, истинна она или не истинна в абсолютном смысле, – ничего этого физик как физик не может и не должен говорить» [29, c. 53; курсив Лосева. – Ю.С.].

Ложность подобных построений остро чувствовал и Достоевский. Пожалуй, наиболее известное, провокационное и неоднозначное обращение его к числам – бунт «подпольного» человека против формулы «2х2=4», которая становится эмблемой непреложности неких рациональных «истин». Герой «Записок из подполья» с возмущением опровергает доводы «положительной» науки и «здравого смысла»: «Я согласен, что дважды два четыре – превосходная вещь; но если уже всё хвалить, то и дважды два пять – премилая иногда вещица» [8, с. 119]. Сам подпольный человек как живой парадокс и нарушение всех рациональных представлений о homo sapiens служит лучшей иллюстрацией принципа: 2х2=5. Противно всякой «бытовой, эгоистической логике» [49, с. 143], которая в мире Достоевского соотносима с «эвклидовым» разумом и рациональным 2х2=4, ведут себя и другие его герои: Прохарчин, Раскольников, Мышкин, Дмитрий Карамазов… Вместе с тем, «“отходя” от Бога», герои Достоевского теряют духовную опору и подпадают под «идейное влияние рассудочного – самую коварную область, где “дважды два – четыре”, где нет чувств, нет веры, а только сухая арифметика “эвклидового разума” – особый дьявольский периметр, дающий уверенность и силу человеку превратиться в мерную единицу “всех вещей в мире”, жить без Бога». [31, с. 232].