Значимые фигуры. Жизнь и открытия великих математиков — страница 19 из 63

). Это число целых чисел между 1 и n, не имеющих с n общих простых делителей. Он предложил гипотезу о законе квадратичной взаимности, позже доказанную Гауссом (глава 10); описал все простые числа, представляющие собой сумму двух квадратов (2, все числа вида 4k + 1, но не числа вида 4k + 3), и улучшил теорему Лагранжа о том, что любое положительное целое число есть сумма четырех квадратов.

Учебники Эйлера по алгебре, математическому анализу, комплексному анализу и другим дисциплинам стандартизировали математическую запись и терминологию, значительная часть которой используется и сегодня (к примеру, π для числа «пи», e для основания натурального логарифма, i для корня квадратного из –1, Σ для суммы и f(x) для общего обозначения функции от x). Он даже свел воедино системы записи Ньютона и Лейбница по дифференциальному исчислению.

* * *

Мне нравится определять математика не как «человека, который занимается математикой», но как «человека, который видит возможность применить математику там, где никто другой ее не увидел бы». Эйлер редко упускал такую возможность. Вот два примера, которые дали начальный толчок развитию новой области, известной сегодня как комбинаторика, или дискретная математика; область эта занимается счетом и упорядочиванием конечных объектов.

Первым из них в 1735 г. стала загадка, связанная с городом Кёнигсберг в Пруссии (ныне Калининград в России). В этом городе, расположенном на реке Прегель, имеется два острова, связанных друг с другом и с берегами реки семью мостами. Загадка состояла в том, чтобы найти такой маршрут через город, который прошел бы по каждому мосту ровно один раз. Начало и конец маршрута могли находиться в разных местах. Эйлер доказал, что такого маршрута не существует, а для этого рассмотрел более общий вопрос с любым расположением островов и мостов. Он доказал, что требуемый маршрут существует в том, и только том случае, когда не более чем два острова связаны с внешним миром нечетным количеством мостов. Сегодня мы интерпретируем эту теорему как одну из первых теорем теории графов – науки о сетях из точек, соединенных линиями. Доказательство Эйлера было алгебраическим и использовало символьное представление маршрута, где острова и мосты обозначались буквами. Несложно доказать, что сформулированное Эйлером условие необходимо для существования требуемого маршрута; труднее доказать, что этого достаточно для его существования.



Второй комбинаторной задачей, которую Эйлер поставил в 1782 г., была загадка 36 офицеров. Имеется шесть полков, в каждом из которых есть шесть офицеров шести разных званий. Можно ли построить полки квадратом 6 × 6 так, чтобы ни в одном ряду и ни в одной колонне не оказалось двух офицеров одного полка или одного звания? Эйлер предполагал, что это невозможно, но этому результату пришлось дожидаться доказательства Гастона Тарри до 1901 г. В основе решения здесь лежит латинский квадрат, в котором n экземпляров n символов необходимо разместить в квадрате n × n так, чтобы каждый символ в каждой строке и в каждом столбце встречался ровно один раз. Требуется, чтобы 36 офицеров образовали два «ортогональных» латинских квадрата – один для полка, другой для ранга, так, чтобы все возможные пары были в них включены. Латинские квадраты применяются, в частности, при разработке статистических тестов, а их широкие обобщения, известные как блочные планы, фигурируют в нескольких областях математики. Одна из вариаций на тему такого квадрата – головоломка судоку.

* * *

Перечисленные мной результаты едва-едва затрагивают громадный объем всего того, что сделал Эйлер в теоретической математике, но не менее плодовит он был также в прикладной математике и в математической физике.

В своей «Механике» 1736 г. он систематизировал и существенно продвинул искусство расчета движения материальной точки. Самым серьезным новшеством было использование вместо геометрии математического анализа, позволившего унифицировать работу с совершенно разными задачами. За этим последовала книга о кораблестроении, которая начиналась с гидростатики и вводила, кроме того, дифференциальные уравнения для движения твердого недеформируемого тела. Эту тему он развил в 1765 г. в «Теории движении твердых тел», где определил систему координат, известную нынче как Эйлеровы углы; он связал ее с тремя осями инерции тела и моментами его инерции относительно этих осей. Оси инерции – это определенные линии, представляющие особые компоненты вращения тела; соответствующий момент определяет количество вращения относительно выбранной оси. В частности, Эйлер решил свои уравнения для Эйлерова волчка – тела с двумя равноправными осями инерции.

В механике жидкостей Эйлер установил фундаментальные уравнения, ныне известные как уравнения Эйлера, которые не потеряли своего значения до сих пор, несмотря на то что в них не учитывается вязкость. Он изучал теорию потенциала с приложениями в области гравитации, электричества, магнетизма и упругости. Его работа со светом способствовала успеху волновой теории, преобладавшей в физике вплоть до появления в 1900 г. квантовой механики. Некоторые его результаты в небесной механике астроном Тобиас Майер использовал при расчете таблиц движения Луны. В 1740 г. Эйлер написал «Метод нахождения кривых линий» (полное название работы намного длиннее приведенного здесь), где положил начало вариационному исчислению. Его задача – поиск кривых и поверхностей, минимизирующих (или максимизирующих) некоторую связанную с ними величину, такую как длина или площадь. Все его книги понятны, элегантны и прекрасно организованы.

Другие труды Эйлера затрагивают такие темы, как музыка, картография и логика – почти не существует областей математики, которые не привлекли бы внимания Эйлера. Лаплас замечательно сформулировал роль Эйлера: «Читайте Эйлера, читайте Эйлера, он наш общий учитель».

9. Повелитель теплоты. Жозеф Фурье

Шел 1804 г., идеи математической физики буквально витали в воздухе. Иоганн Бернулли уже применил Ньютоновы законы движения в комбинации с Гуковым законом о силе, которую развивает растянутая пружина, к колебаниям скрипичной струны. Его идеи привели Жана ле Рона д’Аламбера к формулировке волнового уравнения. Это дифференциальное уравнение в частных производных, описывающее скорости изменения формы струны как в пространстве, так и во времени, показывает поведение самых разных волн – волн на воде, звуковых волн, других колебаний. Аналогичные уравнения в свое время предлагались для магнетизма, электричества и гравитации. Теперь Жозеф Фурье решил применить эти же методы в другой области физики – к потоку теплоты в теплопроводящей среде. После трех лет исследований он представил длинную записку о распространении тепла. Записка была прочитана в Парижском институте и встретила смешанную реакцию, так что решено было организовать комиссию для ее проверки. Когда по итогам проверки был написан отчет, стало ясно, что члены комиссии недовольны. На то у них было две причины – одна хорошая, другая плохая.

Жан-Батист Био обратил внимание членов комиссии на, как он утверждал, проблему с выводом уравнения для потока теплоты. В частности, Фурье не упомянул одну из его собственных работ 1804 г. Это был плохой повод для недовольства, поскольку статья Био была неверна. Хороший же повод состоял в том, что ключевой шаг в рассуждениях Фурье – преобразование периодической функции в бесконечный ряд синусов и косинусов угла, кратного заданному, – не был проведен с должной строгостью. В самом деле, Эйлер и Бернулли не один год пытались обосновать ту же идею в контексте волнового уравнения. Фурье поспешил пояснить свои рассуждения, но комиссию это не удовлетворило.

Тем не менее задача считалась важной, и Фурье существенно прояснил подходы к ней, так что институт объявил, что призовой задачей на 1811 г. будет распространение тепла в твердом теле. Фурье добавил к своей записке кое-какие дополнительные результаты, в основном об остывании и об излучении тепла, и подал работу на конкурс. Новая комиссия присудила ему приз, но отметила все тот же недостаток, связанный с тригонометрическими рядами:

Способ, посредством которого автор приходит к этим уравнениям, не лишен трудностей, а его анализ с целью их интегрирования по-прежнему оставляет желать лучшего в плане общности и даже строгости.

Как правило, победившая в конкурсе работа сразу же публиковалась, но в данном случае комиссия, сославшись на эти недостатки, отказалась делать это.

В 1817 г. Фурье был избран членом Парижской академии наук. Пять лет спустя умер секретарь математической секции Академии Жан Деламбр. На освободившееся место претендовали Франсуа Араго, Био и Фурье, но Араго снял свою кандидатуру, и Фурье выиграл с подавляющим преимуществом. Вскоре после этого Академия опубликовала «Аналитическую теорию тепла» Фурье – ту самую записку, ставшую победителем конкурса. Выглядит так, будто Фурье оказал на комиссию административное давление, но на самом деле работу в печать отправил еще Деламбр. Тем не менее Фурье, должно быть, получил немалое удовлетворение.

* * *

Отец Фурье был портным, у которого от первого брака осталось трое детей. После смерти жены он женился вновь, и в этом втором браке на свет появилось ни много ни мало 12 детей, из которых Жозеф был девятым. Когда мальчику было девять лет, его мать умерла, а через год умер и отец. Свое образование Жозеф начал в школе, которой заведовал музыкант местного Осерского собора. Мальчик прекрасно проявил себя в изучении французского языка и латыни. В 1780 г., в возрасте 12 лет, он продолжил обучение в местной же Королевской военной школе. У него неплохо шла литература, но к 13 годам начал проявляться и основной талант – математика. Мальчик самостоятельно читал сложные математические тексты: так, меньше чем за год он одолел все шесть томов «Курса математики» Этьена Безу.