ЗНАК ВОПРОСА 1995 № 02 — страница 50 из 57

Примерно такие же проекты по созданию и автоматическому развертыванию лунных станций разработаны специалистами США, России и Японии. А два энтузиаста — российский архитектор Джангар Пюреев и финский строитель Пека Теревя — даже разработали проект лунной станции для более быстрого освоения спутницы нашей планеты. Проект они назвали «Луна-2012», намекая, что подобное строительство возможно и раньше 20-го года следующего столетия.

Однако для чего же все-таки так рвутся исследователи снова на Луну? Неужто им все не дают покоя космодромы, точнее, лунодромы «летающих тарелок» и желание поближе познакомиться со строителями лунных подземелий?.. Оказывается, нет. У землян на Луне есть и другие, куда более прозаические, экономически выгодные интересы. О них-то как раз академик А. С. Коротеев и его коллеги рассказали на недавней пресс-конференции.

Сегодня Россия, как и другие развитые страны Земли, стоит перед проблемой: откуда брать энергию для удовлетворения все растущих запросов населения и промышленности? На тепловые и гидроэлектростанции надеяться особо не приходится — как показывают современные исследования, они чересчур уж вредят окружающей среде. О ядерных и термоядерных станциях тоже говорить всерьез не приходится. О первых потому, что чернобыльская и ей подобные катастрофы создали у населения стойкую радиофобию. Что же касается создания термоядерных реакторов, то работы по ним ведутся ни шатко, ни валко, поскольку даже сами создатели понимают: новые установки на первых порах будут ничуть не «чище» современных ядерных котлов, а стало быть, и отношение к ним будет соответствующее.

Стало быть, надо ждать дальнейшего развития нетрадиционных источников энергии. Но каких именно? Ветровые, геотермальные и приливные электростанции имеет смысл строить лишь в определенных, не столь уж многочисленных регионах страны. Для солнечных же электростанций, учитывая северное расположение основных территорий России, характерна низкая плотность энергии (в среднем за год не более 100 Вт/кв.м.) и высокая неравномерность, вплоть до полного отсутствия, солнечного света зимою в Заполярье.

Поэтому, уж если использовать даровую энергию нашего светила, то станции надо строить прямо на околоземной орбите, где Солнце светит круглые сутки, причем плотность его энергии почти в 15 раз выше, чем на поверхности планеты.

Сама по себе идея создания орбитальных станций — не бог весть какая новость; она муссируется в специальной и научно-популярной литературе уже лет тридцать. Во всяком случае, первую работу на эту тему наш соотечественник П. А. Варваров опубликовал еще в 1960 году, а его коллега П. Глейзер из США — в 1968 году.

Отметим вкратце основные достоинства и недостатки подобного способа получения энергии.

Несомненным достоинством идеи, как уже говорилось, является наличие такого «бесплатного» источника, как наше светило. Однако, чтобы преобразовать солнечный свет в электричество, переправить энергию на поверхность планеты, человечество должно затратить определенные усилия. Необходимо доставить на орбиту и развернуть там огромные конструкции солнечных элементов — как говорят предварительные расчеты, речь здесь идет о площадях 100 × 100 км и более. Кроме того, ныне существующие преобразователи солнечной энергии имеют довольно низкий КПД, но солидную массу. Так ныне в основном используются батареи, имеющие отношение массы к вырабатываемой энергии порядка 100 кг/к Вт, когда необходимо иметь хотя бы на два порядка поменьше. Подобные конструкции на основе аморфного кремния, могущие давать 1 кг/кВт, разрабатываются ныне в лабораториях США и Японии.

Если браться за создание солнечных электростанций сегодня, то придется переправлять на орбиту огромные массы грузов — десятки тысяч тонн в год. Ни одноразовые носители типа современных ракет, включая наиболее совершенные «Протоны», «Зениты», «Энергии» и «Сатурны», ни многоразовые типа «Шаттлов» и «Буранов» с такой задачей не справятся. Нужно создавать новые, многоразовые носители одноступенчатого типа, которые могли бы базироваться на обычных аэродромах.

Не решена до конца и проблема переброски полученной энергии из космоса на Землю. Правда, еще в 1965 году был произведен такой эксперимент. Между двумя горными вершинами было передано по воздуху с помощью СВЧ-излучения около 30 кВт. Этого оказалось вполне достаточно, чтобы зажечь гирлянду электролампочек и раскрутить несколько электромоторов. К концу XXI столетия, как обещают американские инженеры, таким способом можно будет передавать до 100 тераватт (1 тВт = 1012 Вт)!

Таковы на сегодняшний день идеи и предположения. Ну а каковы будут предложения?

По свидетельству авторов нынешнего проекта, начиная с 60-х годов произошло по крайней мере пять революций в сознании разработчиков. Во-первых, люди поняли, что нельзя насиловать старушку Землю до бесконечности — подорванная экология погубит нас всех вернее вселенского потопа. Так что волей-неволей надо переносить наиболее «грязные» производства за пределы планеты. Во-вторых, инженеры и ученые сообразили, что не надо возить с Земли на орбиту какие-то грузы все время — гораздо экономичнее и выгоднее использовать местные околопланетные ресурсы. В-третьих, зачем создавать строительную базу в пустоте, когда есть Луна — разместить необходимое оборудование на естественном спутнике Земли куда удобнее, быстрее и безопаснее. В-четвертых, сам лунный грунт можно использовать в качестве топлива. В-пятых, современная технологическая база уже достаточно совершенна, чтобы можно было ставить перед ней подобные задачи и надеяться, что они будут решены в обозримом будущем.

Так выглядят суждения разработчиков в самом конспективном изложении. Теперь давайте рассмотрим их более подробно.

Если предположить, что в скором времени значительная часть общего энергопотребления планеты будет обеспечиваться околоземными солнечными станциями, то их масса должна составить 20—100 млн.т. Так говорят расчеты. Они же показывают: чтобы развернуть подобную систему за ближайшие 30 лет, потребный грузопоток должен составлять от 1 до 5 млн. т грузов в год — на три порядка больше, чем могут обеспечить нынешние штатные ракеты-носители всех «космических» стран, вместе взятых. Кроме того, осуществление подобной программы потребует развертывания на Земле массового производства кремниевых элементов, а это весьма вредное производство, как уже говорилось, может окончательно подорвать экологию планеты.

Таковы соображения с одной стороны. С другой, анализ поверхностного слоя лунного грунта, доставленного беспилотными космическими аппаратами типа «Луна» и пилотируемыми экспедициями «Аполлонов», выявил наличие в нем всех важнейших элементов, необходимых как для создания самой солнечной электростанции, так и для использования в качестве топлива для двигательных установок межорбитальных буксиров. Достаточно в лунном грунте и кислорода, столь необходимого для работы систем жизнеобеспечения.

В связи с этим в настоящее время рассматриваются как минимум три варианта энергоснабжения Земли из космоса к середине XXI века.

Вариант первый предусматривает развертывание сотен сравнительно небольших солнечных электростанций мощностью до 10 гигаватт на геостационарной орбите. На Луну в таком случае доставляются только горнодобывающее оборудование и комплекс для переработки лунного грунта. Изготовленные на Луне элементы затем транспортируются на орбиту с помощью многоразовых буксиров, работающих на топливе, также вырабатываемом из лунного грунта. В таком случае суммарная масса всех лунных ракет будет примерно в 35 раз меньше суммарной массы ракет-носителей наземного базирования.

Разработка по второму варианту такова: на поверхности Луны строятся крупногабаритные энергоизлучающие СВЧ-станции с питанием фазированных антенных решеток от фотоэлектрических преобразователей. Мощность единичного комплекса при этом будет составлять до 1 гигаватта, а габариты приемных антенн могут достигать 100 км. Потребуется также дополнительное оборудование — отражатели солнечных лучей на окололунных орбитах и СВЧ-отражатели на околоземных. Только с их помощью удастся передавать энергию в любой район Земли в нужное время суток. Зато при сооружении такой системы не понадобится переправлять большое количество грузов с Луны на околоземную орбиту. Впрочем, и по этому варианту масштабы работ предстоят немалые. Для развертывания комплексов суммарной мощностью 10 тераватт потребуется в течение 30 лет переработать около 300 млн. т грунта на Луне и создать около 200 млн. т конструкций на орбитах обоих небесных тел. Определенным достоинством данного варианта является принципиальная возможность передачи энергии с Луны узкоприцельными пучками за счет большой апертуры передающих антенн.

Наконец, третий вариант прогнозирует строительство на Луне промышленного комплекса по добыче гелия-3. Его затем можно либо переправлять на Землю с целью обеспечения работы термоядерных электростанций с экологически чистым циклом, либо поставить подобные реакторы тут же на Луне, а на Землю переправлять уже полученную энергию. Такой вариант в дополнение ко второму выгоден еще и тем, что при производстве гелия-3 попутно получится огромное количество водорода, воды, метана, азота и других веществ, которые с успехом могут быть использованы для жизнеобеспечения обитателей лунной колонии. Заодно данная технология может дать около 4 млн. т титана для производства конструкций, как на Луне, так и в космосе.

Понятное дело, столь огромный объем работ невозможно выполнить быстро даже и при широком международном сотрудничестве. Поэтому разработчики разбивают весь проект на несколько этапов, осуществление которых можно вести по очереди.

Закончив поисково-исследовательские работы, проектанты в 2000–2015 годах предлагают развернуть системы освещения, энерго- и теплоснабжения отдельных районов Земли из космоса, а также создать транспортную космическую инфраструктуру для обслуживания маршрута Земля — Луна — Земля и первого поселения на Луне со сменным экипажем численностью 10 человек. В рамках первого этапа предполагается также создать две низкоорбитальные солнечные станции мегаваттной мощности. Расчеты показывают, что такая система сможет обеспечить энергией некоторые районы Заполярья, Сибири, Камчатки, а также снабдит электричеством большое количес