Знак Вопроса 1997 № 04 — страница 46 из 46

йтрализовать и этот фактор. Ведь случается, что у беременной женщины с отрицательным резусом возникает иммунная реакция на положительный резус плода. И она может нанести вред, если следующий ребенок тоже будет с таким же резусом. Так что проблему придется решать хоть так, хоть эдак…»

Несколько лабораторий уже начали исследования в данном направлении. Будем надеяться, что через несколько лет будет найден способ сделать и резус универсальным или обратимым.

ГОЛУБАЯ РОЗА, СИНИЙ ПОМИДОР…

В романе В. Войновича незадачливый селекционер пытается получить растения, у которых все было бы пригодно в дело — и вершки, и корешки — да у него лишь одна дрянь выходит. А все потому, что данный герой не с того конца за дело взялся. Надо было ему попросить у солдата Чонкина, как минимум, его винтовку, а еще лучше — пулемет. Вон, селекционеры Израиля при случае не стесняются в дело даже пушку пустить…


Сегодняшняя селекционная наука оставила далеко позади мичуринцев с их традиционными методами выведения новых сортов. Ныне уж не нужны подвои, привои, перекрестное опыление и прочие премудрости. Дело идет куда быстрее, когда исследователи манипулируют непосредственно с носителями наследственной информации — генами. Если поменять в хромосоме один ген на другой или просто добавить к существующей цепочке парочку закодированных признаков, то можно, в принципе, добиться, что и на вербе груши вырастут.

Только вот беда — добавлять гены поштучно, вручную, под микроскопом — работа достаточно утомительная. Поэтому многие исследователи стали ныне подходить к операциям на клетке с точки зрения не хирургических, но военных стандартов — для достижения успеха засылают лазутчиков, а то и просто идут в лобовую атаку, используя массированный огонь.

В роли лазутчиков выступают генетически модифицированные бактерии или вирусы. Операцию вручную делают лишь одной особи, меняя в ней по своему усмотрению генетический код, а дальше в дело вступает сама природа. Бактерия быстро размножается и ее сородичи самостоятельно внедряются в клетки того или иного организма, заменяя собственный генетический код на модифицированный.

А иногда поступают и того проще. В раствор с модифицированными генами окунают крошечные стеклянные шарики, которыми затем заряжают специальную пушку или, скорее, пистолет — размеры орудия не так уж велики: некоторые модификации вполне можно держать в одной руке. Выстрел — и вылетающие шарики-дробины застревают, скажем, в мякоти картофельного клубня. Некоторые из генов при этом оказываются внедренными в геномы картофеля. И если такой клубень затем высадить в почву, то из него вырастет растение с заранее заданными свойствами.

На международной выставке цветов, например, недавно было продемонстрировано очередное достижение генетической инженерии — голубая роза. Сбылась вековая мечта цветоводов, десятилетиями пытавшихся вывести подобный сорт с помощью традиционных методов селекционной работы. А тут соответствующий ген, отвечающий за цвет лепестков, был попросту взят от растения другого сорта — василька.

Результатом другого исследования оказалась геномная карта помидоров. Теперь исследователю не составляет труда отыскать в цепочке ген, отвечающий не только за цвет помидора, но и, скажем, за его форму, размеры и т. д.

В скором будущем исследователи обещают продемонстрировать помидор-гигант кубической формы и, скажем, сине-фиолетового цвета — точно такого же, как имеют ныне баклажаны. Причем, если изменение цвета в данном случае — не более, чем пижонство, этакий изыск, то вот кубическая форма позволяет вести более плотную упаковку плодов в прямоугольные ящики. Более крупные плоды охотнее покупаются. А если добавить овощу еще и плотную, особо прочную кожицу, то можно будет надеяться, что такие помидоры практически не будут повреждаться при сборе и транспортировке.

К сказанному остается добавить, что при нынешних методах результаты селекционной работы сказываются в сказочно короткие сроки. Итоги выстрела из пистолета становятся очевидными уже через двое суток; изменения, проводимые с помощью бактериального «десанта» и приводящие к изменениям более глубинного характера, сказываются через два месяца.

ГЕРБИЦИДЫ ПРОТИВ МИКРОБОВ

Поиски новых лекарств для подавления жизнедеятельности одноклеточных паразитов — возбудителей заболеваний человека, животных и растений — важный раздел химиотерапии инфекционных заболеваний. Недавно здесь было сделано открытие, позволяющее усовершенствовать методы поиска новых противомикробных средств.


Для того чтобы найти эффективное лекарство против какого-то паразита, необходимо выбрать конкретную цель для поражения в организме микроба. Не бывает соединений, которые бы действовали вообще. Известно, например, что большинство антибиотиков обладает способностью связываться с клеточными мембранами, препятствуя тем самым клеточному делению. Наиболее перспективные лечебные препараты против СПИДа представляют собой ингибиторы фермента обратной транскриптазы, находящегося в структуре вируса им-муннодефицита и являющегося главным инструментом репродукции.

Так что выбор «ахиллесовой пяты» в структуре микроба — дело весьма важное. От структуры выбранной мишени зависит структура и свойства синтезируемого ингибитора. Новейшие исследования показали, что, скажем, эффективным средством против малярии может стать воздействие на весьма своеобразные структуры — органеллы, носящие название хлоропластов, или пластид.

Хлоропласты, как таковые, известны довольно давно. Это разновидность структуры растительных клеток и клеток зеленых водорослей, осуществляющие в них функции фотосинтеза. И вот теперь выяснилось, что подобные же органеллы есть и в структуре одноклеточных паразитов. Это как бы затоны, в которых скапливаются неработающие хлоропласты.

По всей вероятности, одноклеточные паразиты поглотили эти структуры вместе с клетками зеленых водорослей в процессе своего эволюционного развития. Затем паразиты превратили проглоченные хлоропласты вместе с их наследственным веществом ДНК в собственные органеллы, получившие название пластид.

Вот это и составляет основу открытия, сделанного доктором Джефри Палмером, специалистом по молекулярным основам эволюции из университета штата Луизиана, доктором Дэвидом Россом, биологом из университета штата Пенсильвания и их соавторами.

В настоящее время пластиды у микробов не работают, их функции не ясны, однако их наличие облегчает борьбу с данными паразитами. Дело в том, что переместившись в древности из растительных клеток в одноклеточных паразитов, хлоропласты не утратили своей растительной природы, а стало быть, есть основания применять в качестве лекарств… гербициды и другие подобные препараты, использовавшиеся ранее только для борьбы с сорняками в сельском хозяйстве.

Раньше было известно, что паразиты содержат свои ДНК в ядрах, а также в митохондриях — энергостанциях клеток, расположенных в цитоплазме. Кроме того, имелись сведения, что в клетках имеются еще какие-то ДНК, природа которых неизвестна. И вот теперь «мистическая» ДНК идентифицирована как компонент хлоропластов, захваченных одноклеточными паразитами из зеленых водорослей многие миллионы лет назад в ходе эволюционного развития. Причем ДНК эти абсолютно идентичны тем, что имеются в растительных клетках и по сей день.

На сегодняшний день найдено уже около 5000 паразитов, обладающих вот такими, «украденными» некогда, хлоропластами. Среди них, например, и токсоплазмы — возбудители тяжелейшего инфекционного заболевания — токсоплазмоза. Именно от него и погибают чаще всего люди, иммунная система которых ослаблена СПИДом. Заболевание также часто поражает кошек, а через них — детей и беременных женщин.

Воздействие на хлоропласты гербицидами или им подобными веществами, не задевающими клетки животного происхождения, и дает нам в руки новый эффективный метод борьбы с инфекционными болезнями.

Издательство «Знание»

не забывает о своих читателях

и приготовило им подарок:

4 номер серии «Знак вопроса»

выходит с ПРИЛОЖЕНИЕМ.

Надеемся, что вы останетесь довольны.