Золото, пуля, спасительный яд — страница 32 из 53

цепной реакции – ПЦР. О ней слышали все, кому довелось посещать современные диагностические центры. Так что против обыкновения начну с технологии.

Представьте, что у вас в руках находится образец ДНК, выделенный из какой-нибудь окаменелости или из вашего собственного организма, вырезанный с помощью рестриктазы из ДНК бактерии или полученный искусственно с помощью автоматического синтезатора. Во всех этих случаях вы располагаете очень маленьким количеством ДНК, подчас одной только молекулой. Проанализировать ее нет никакой возможности – не хватает чувствительности самых мощных современных методов. Единственный выход – каким-то образом размножить эти молекулы ДНК. Но как это сделать?

Природа это делать умеет, удвоение ДНК происходит при каждом делении клетки. Процесс этот очень сложный, выше я описал лишь вершину айсберга, на самом деле в репликации ДНК помимо хеликазы и ДНК-полимеразы участвует множество других ферментов и белков, и нет никакой надежды на то, что нам удастся заставить их работать в пробирке так же слаженно, как в живой клетке. И тем не менее приведенных мною сведений более чем достаточно для осуществления этого процесса. Напомню главный момент: для начала работы ДНК-полимеразе необходима затравка, называемая праймером. В клетке праймеры синтезирует специальная молекулярная машина, а у нас для этого есть автоматический синтезатор.

Итак, для разъединения цепей нам не нужна никакая хеликаза, для этого достаточно просто нагреть водный раствор почти до кипения. Затем добавим в раствор праймеры, соответствующие концевым участкам обеих цепей[41], и начнем охлаждать раствор. В отсутствие праймеров цепи бы вновь соединились, но праймеров мы добавили много, они первыми успевают к концам цепей и прочно связываются с ними. Затем мы охлаждаем раствор до температуры, при которой хорошо работает ДНК-полимераза, добавляем ее в раствор вместе с набором нуклеотидов, и фермент немедленно начинает пристраивать их к праймеру, наращивая комплементарную цепь ДНК. В результате мы получим две точные копии исходной молекулы ДНК. А затем мы вновь нагреем этот раствор почти до кипения…

Так начинается своеобразный цепной процесс с удвоением количества молекул ДНК в каждом цикле, так называемое амплифицирование ДНК. Нетрудно подсчитать, что за 25 циклов образуется около 30 миллионов копий – количество, более чем достаточное как для анализа рутинными методами, так и для последующих превращений. Продолжительность цикла зависит, естественно, от длины молекулы ДНК. В основном копируют фрагменты длиной до 3000 пар нуклеотидов, на проведение одного цикла требуется 1–3 минуты. Но возможно копирование молекул ДНК с длиной до 40 тысяч пар нуклеотидов.

Для практических нужд чрезвычайно важно, что ПЦР позволяет скопировать определенный фрагмент молекулы ДНК. Праймеры при этом выполняют роль колышков, которые мы вбиваем в молекулу ДНК, говоря ДНК-полимеразе: строй от сих до сих. Таким образом, нет необходимости разрезать молекулу ДНК на части и выделять требуемый ген, можно его скопировать и размножить напрямую.

Теперь о человеке, который все это придумал. Зовут его Кари Маллис. Родился он в 1944 году в небольшом городке в штате Северная Каролина, с детства интересовался математикой, физикой и химией (в основном взрывчатыми веществами), образование получил химическое, увлекаясь тем же, чем и все студенты того времени, – ЛСД и все такое прочее. После окончания университета не много позанимался бизнесом, в 1972 получил степень Ph.D. по биохимии в Университете Калифорнии в Беркли, будучи аспирантом, увлекся астрофизикой и опубликовал статью с амбициозным названием “Космологические последствия обращения времени” в журнале “Nature”, ни много ни мало. После защиты диссертации бросил науку ради сочинительства романов, два года управлял пекарней, в 1979 году устроился работать химиком-синтетиком в небольшую биотехнологическую компанию “Cetus” в Калифорнии. Дважды разведен, трое детей. С точки зрения любого нормального человека – полный неудачник.Сам он так, естественно, не считал и продолжал размышлять над великими вопросами. И вот однажды весной 1983 года, в пятницу вечером, возвращаясь с работы, он задался тем же вопросом, что и мы: как размножить ДНК? Ответ пришел в виде озарения. Как рассказывал сам Маллис, он был потрясен красотой идеи, он даже остановился у придорожного киоска, купил бумагу и ручку и стал подсчитывать, сколько же в придуманной им реакции получается ДНК. Числа вы уже знаете, они большие. Весь уик-энд Маллис промучился сомнениями. Идея была хоть и красивой, но очень простой, она была суммой нескольких общеизвестных фактов, казалось невероятным, чтобы кто-то уже не попробовал ее реализовать. В понедельник ни свет ни заря Маллис поехал на работу, чего с ним отродясь не случалось, и все ради того, чтобы покопаться в библиотеке и убедиться в том, что ничего подобного в научной литературе нет.Идея была проста, но претворить ее в жизнь оказалось непросто – первую успешную реакцию ПЦР Маллис осуществил только по прошествии нескольких месяцев. На окончательную отработку методики ушло еще три года. Дело в том, что в описанной мною схеме есть существенный изъян, который вы, возможно, заметили. В начале каждого цикла водный раствор нагревают почти до кипения, ДНК-полимераза такого не выдерживает и денатурирует. Так что Маллису приходилось каждый раз добавлять после охлаждения свежую ДНК-полимеразу, а это лишний расход дорогого фермента и дополнительное загрязнение раствора. И тут Маллис обратил внимание на класс термостабильных ДНК-полимераз, выделенных незадолго до этого из бактерий Thermus aquaticus , обитающих, как понятно из названия, в горячих водах термальных источников.

Их описали несколько групп исследователей, в том числе советский биохимик Алексей Каледин в 1980 году[42]. Эти полимеразы выдерживали кипячение в водном растворе и работали при 70 °С. Так ПЦР обрела законченный вид.

Еще сложнее оказалось убедить научное сообщество в значимости новой реакции. Руководство и сотрудники родной фирмы отнеслись поначалу к идее Маллиса без энтузиазма. Журналы “Science” и “Nature” (на меньшее Маллис был не согласен) его статью отклонили со стандартной отговоркой: статья узкоспециальная, а они публикуют только статьи, имеющие общенаучное значение.

А по прошествии пары лет Маллису пришлось доказывать, наоборот, что это он придумал реакцию ПЦР. Пока он доводил свою методику до уровня Nature, руководство компании, оценившее наконец значимость ПЦР, поручило двум сотрудникам разработать диагностические тесты на ее основе. Их статья в “Science” вышла раньше статьи Маллиса в “Nature”. И тут же встрепенулись другие ученые. У победы много отцов, со всех сторон стали доноситься голоса ученых, утверждавших, что это они открыли ПЦР. Задним числом реакция выглядела тривиальной, основанной на общеизвестных фактах, вот людям и казалось, что они все этого уже делали.

В пользу Маллиса говорил патент, где он был единственным автором. С патентом вышла такая история. Так как Маллис выполнял исследования в рабочее время на оборудовании фирмы, то и патент был собственностью фирмы. За свою работу Маллис получил премию в десять тысяч долларов, а по прошествии нескольких лет компания “Cetus” продала этот патент за триста миллионов долларов.

Впрочем, Маллиса в компании тогда уже не было, он покинул ее сразу после того, как довел до ума реакцию ПЦР. Он занимался разного рода бизнесом до 1993 года, когда ему присудили Нобелевскую премию по химии. С тех пор он полностью отдался виндсерфингу и писательству, счастливо женился, да еще периодически эпатирует общественность заявлениями о том, что американцы на Луне не были, а знаменитые кадры сняты в Голливуде, что нет и СПИДа как болезни, вызываемой вирусом ВИЧ, что изменение климата из-за техногенных выбросов углекислого газа и озоновые дыры – это все выдумки политиков, экологов и ученых, стремящихся нагреть на этом руки. Его за это клеймят сумасшедшим. Так ли это, вам судить. Но внешность у него характерная – настоящий изобретатель, с сумасшедшинкой в глазах.

Вернемся ненадолго к самому методу. Почему ПЦР относят к крупнейшим достижениям химии последнего полувека? Из школьного курса мы помним огромное многообразие типов химических реакций: разложения, присоединения, замещения, изомеризации, полимеризации, поликонденсации и т. д. ПЦР явила первый пример реакций нового типа – размножения или синтеза по шаблону.

В сущности, мы имеем химический реактор, в котором находятся исходные вещества и молекулярная машина. Мы вносим в реактор одну молекулу образца, шаблона, затравки, называйте как угодно, и машина начинает сборку его точных химических копий. Что внесем, то и получим. Эх, распространить бы эту реакцию на всю химию. Да и вообще. Наша извечная беда: единичный экземпляр какого-нибудь устройства мы сделаем, и он будет лучшим в мире, но вот наладить его серийное производство – выше наших сил. Изобрести бы на этот случай какую-нибудь специальную машинку, вроде нанояпонца.

Метод ПЦР удивительно легко автоматизируется. Первые автоматические устройства поступили в продажу в начале 1990-х годов – пример рекордно быстрой промышленной реализации научно-технической разработки. В настоящее время ДНК-амплификатор – довольно рутинный прибор, которым оснащены все хорошие медицинские диагностические центры. Он немногим больше лазерного принтера, в нем можно одновременно осуществлять несколько десятков различных реакций ПЦР в маленьких пластиковых пробирках.

Поражает простота осуществления ПЦР. Не требуется никаких предварительных операций выделения или очистки исходной ДНК, иногда берут просто содержащий ее материал – каплю мочи, слюны, крови, кусочек ткани или кости. ПЦР-амплифицирование во многие тысячи раз упростило, ускорило и удешевило процесс выделения специфического фрагмента ДНК, например, какого-то гена. То, что раньше достигалось многомесячным трудом коллектива высокопрофессиональных специалистов, ныне осуществляет один работник со специальной подготовкой за один рабочий день.