Звезды: их рождение, жизнь и смерть — страница 25 из 90

/c может быть порядка 1/10. Она зависит от структуры звездных недр (см. § 12). Из формулы (6.2) следует, что температура в центральных областях Солнца должна быть порядка десяти миллионов кельвинов. Более точные расчеты отличаются от полученной нами сейчас оценки всего лишь на 20—30%. Итак, температура в центральных областях звезд исключительно велика — примерно в тысячу раз больше, чем на их поверхности. Теперь обсудим, каковы должны быть свойства вещества, нагретого до такой высокой температуры. Прежде всего такое вещество, несмотря на свою большую плотность, должно находиться в газообразном состоянии. Об этом речь уже шла выше. Но мы можем теперь уточнить это утверждение. При такой высокой температуре свойства газа в недрах звезд, несмотря на его высокую плотность, будут почти неотличимы от свойств идеального газа, т. е. такого газа, в котором взаимодействия между составляющими его частицами (атомами, электронами, ионами) сводятся к столкновениям. Именно для идеального газа справедлив закон Клапейрона, которым мы воспользовались при оценке температуры в центральных областях звезд.

При температуре порядка десяти миллионов кельвинов и при плотностях, которые там существуют, все атомы должны быть ионизованы. В самом деле, средняя кинетическая энергия каждой частицы газа = kT будет около 10-9 эрг или 1000 эВ.

Это означает, что каждое столкновение электрона с атомом может привести к ионизации последнего, так как энергия связи электронов в атоме (так называемый «потенциал ионизации»), как правило, меньше тысячи электронвольт. Только самые «глубокие» электронные оболочки у тяжелых атомов останутся «нетронутыми», т. е. будут удержаны своими атомами. Состояние ионизации внутри-звездного вещества определяет его среднюю молекулярную массу, величина которой, как мы уже имели возможность убедиться, играет большую роль в недрах звезд. Если бы вещество звезды состояло только из полностью ионизованного водорода (как мы положили выше), то средняя молекулярная масса , равнялась бы 1/2. Если бы там был только полностью ионизованный гелий, то = 4/3 (так как при ионизации одного атома гелия с атомной массой 4 образуются три частицы — ядро гелия плюс два электрона). Наконец, если бы вещество недр звезды состояло только из тяжелых элементов (кислорода, углерода, железа и пр.), то средняя молекулярная масса его при полной ионизации всех атомов была бы близка к 2, так как для таких элементов атомная масса приблизительно вдвое больше, чем число электронов в атоме.

В действительности вещество звездных недр представляет собой некоторую смесь водорода, гелия и тяжелых элементов. Относительное содержание этих основных компонент звездного вещества (не по числу атомов, а по массе) обычно обозначается через буквы X, Y и Z, которые характеризуют химический состав звезды. У типичных звезд, более или менее сходных с Солнцем, X = 0,73, Y = 0,25, Z = 0,02. Отношение Y/X0,3 означает, что на каждые 10 атомов водорода приходится приблизительно один атом гелия. Относительное количество тяжелых элементов весьма мало. Например, атомов кислорода примерно в тысячу раз меньше, чем водорода. Тем не менее роль тяжелых элементов в структуре внутренних областей звезд довольно значительна, так как они сильно влияют на непрозрачность звездного вещества. Среднюю молекулярную массу звезды мы можем теперь определить простой формулой:

(6.3)

Роль Z в оценке незначительна. Решающее значение для величины средней молекулярной массы имеют X и Y . Для звезд центральной части главной последовательности (в частности, для Солнца) = 0,6. Так как величина для большинства звезд меняется в очень незначительных пределах, мы можем написать простую формулу для центральных температур различных звезд, выразив их массы и радиусы в долях солнечной массы M и солнечного радиуса R:

(6.4)

где T — температура центральных областей Солнца. Выше, мы грубо оценили T в 10 миллионов кельвинов. Точные вычисления дают значение T = 14 миллионов кельвинов. Из формулы (6.4) следует, например, что температура недр массивных горячих (на поверхности!) звезд спектрального класса В раза в 2—3 выше температуры солнечных недр, в то время как у красных карликов центральные температуры раза в 2—3 ниже солнечных.

Существенно, что температура 107 К характерна не только для самых центральных областей звезд, но и для окружающего центр звезды большого объема. Учитывая, что плотность звездного вещества растет по направлению к центру, мы можем сделать вывод, что основная часть массы звезды имеет температуру, во всяком случае превышающую 5 миллионов кельвинов. Если мы еще вспомним, что большая часть массы Вселенной заключена в звездах, то напрашивается вывод, что вещество Вселенной, как правило, горячее и плотное. Следует, однако, к этому добавить, что речь идет о современной Вселенной: в далеком прошлом и будущем состояние вещества Вселенной было и будет совсем другим. Об этом речь шла во введении к этой книге.

Глава 7 Как излучают звезды?

При температуре порядка десяти миллионов кельвинов и достаточно высокой плотности вещества недра звезды должны быть «наполнены» огромным количеством излучения. Кванты этого излучения непрерывно взаимодействуют с веществом, поглощаясь и переизлучаясь им. В результате таких процессов поле излучения приобретает равновесный характер (строго говоря, почти равновесный характер — см. ниже), т. е. оно описывается известной формулой Планка с параметром T, равным температуре среды. Например, плотность излучения на частоте в единичном интервале частот равна

(7.1)

в то время как полная плотность излучения задается известным законом Стефана — Больцмана

(7.2)

Важной характеристикой поля излучения является его интенсивность, обычно обозначаемая символом I. Последняя определяется как количество энергии, протекающее через площадку в один квадратный сантиметр в единичном интервале частот за одну секунду внутри телесного угла в один стерадиан в некотором заданном направлении, причем площадка перпендикулярна к этому направлению. Если для всех направлений величина интенсивности одинакова, то она связана с плотностью излучения простым соотношением

(7.3)

Аналогично, полная интенсивность I связана с плотностью излучения и выражением

(7.4)

Наконец, особое значение для проблемы внутреннего строения звезд имеет поток излучения, обозначаемый буквой H. Мы можем определить эту важную величину через полное количество энергии, протекающей наружу через некоторую воображаемую сферу, окружающую центр звезды:

(7.5)

Если энергия «производится» только в самых внутренних областях звезды, то величина L остается постоянной, т. е. не зависит от произвольно выбранного радиуса r. Полагая r = R, т. е. радиусу звезды, мы найдем смысл L: очевидно, это просто светимость звезды. Что же касается величины потока H, то она меняется с глубиной как r-2.

Если бы интенсивность излучения по всем направлениям была строго одинакова (т. е., как говорят, поле излучения было бы изотропным), то поток H был бы равен нулю[ 18 ]. Это легко понять, если представить, что в изотропном поле количество излучения, вытекающее через сферу произвольного радиуса наружу, равно количеству втекающей внутрь этой воображаемой сферы энергии. В условиях звездных недр поле излучения почти изотропно. Это означает, что величина I подавляюще превосходит H. В этом мы можем убедиться непосредственно. Согласно (7.2) и (7.4) при T = 107 К I = 1023 эрг/см2с стер, а количество излучения, протекающее в каком-нибудь одном направлении («вверх» или «вниз»), будет несколько больше: F = I = 3 1023 эрг/см2с. Между тем величина потока излучения Солнца в его центральной части,. где-нибудь на расстоянии 100000 км от его центра (это в семь раз меньше солнечного радиуса), будет равна H = L/4r2 = 4 1033/1021 = 4 1012 эрг/см2с, т.е. в тысячу миллиардов раз меньше. Это объясняется тем, что в солнечных недрах поток излучения наружу («вверх») почти в точности равен потоку внутрь («вниз»). Все дело в этом «почти». Ничтожная разница в интенсивности поля излучения и определяет всю картину излучения звезды. Именно по этой причине мы сделали выше оговорку, что поле излучения почти равновесно. При строго равновесном поле излучения никакого потока излучения не должно быть! Еще раз подчеркнем, что отклонения реального поля излучения в недрах звезд от планковского совершенно ничтожны, что видно из малости отношения H/F10-12.

При T107 К максимум энергии в планковском спектре приходится на рентгеновский диапазон. Это следует из хорошо известного из элементарной теории излучения закона Вина:

(7.6)