Звуки и знаки — страница 14 из 42

отя бы приблизительно, в работе нашей собственной «вычислительной машины» — мозга, причем под определенным углом зрения — лингвистическим. Не инженер, а лингвист должен найти формулы языка, алгоритмы нашего повседневного чуда — языка, которое предстает перед нами каждый день и каждый миг. Задача же эта необычайно сложна и трудна.

Причем на пути ученых встают трудности самого различного характера: технические, лингвистические, логические. Предположим, что нам удалось решить проблемы смысловых множителей, разложить любое слово на отдельные «атомы смысла», его составляющие. Сколько же слов понадобится вводить в память машины?

Мы уже говорили, что словари таких развитых языков, как русский или английский, включают около полумиллиона слов. Но ведь есть еще и так называемые фразеологизмы, непереводимые буквально выражения, идиомы. Их в языке много тысяч. Добавьте к ним также десятки тысяч специальных терминов, в словари литературного языка не вошедших. А такой развитой терминологией обладают все науки, будь то химия, медицина, электроника или сама лингвистика («Словарь лингвистических терминов» О. С. Ахмановой включает семь тысяч единиц, а в него вошли далеко не все термины современной науки о языке, например, нет в словаре ни «инженерной лингвистики», ни «нейролингвистики», то есть целых дисциплин, имеющих свою собственную терминологию!). Так что общее число слов будет, пожалуй, превышать миллион. А ведь к ним надо прибавить еще правила грамматики и программы, объем которых составит не менее трети машинной записи словаря!

Это, так сказать, трудность чисто техническая. Не за горами то время, когда ЭВМ будут обладать памятью, достаточно большой, чтобы вместить всю эту информацию. Но здесь встает следующая проблема — проблема времени. Для ввода одного слова в ЭВМ, снабженного всеми нужными признаками, смысловыми и грамматическими, необходим день работы одного исполнителя. Значит, чтобы ввести миллион слов в ЭВМ, нужен один миллион человеко-дней или тридцать лет работы коллектива, состоящего из ста человек.

Эта проблема, в свою очередь, порождает проблему, которую называют «парадоксом Ахиллеса и черепахи». Парадокс этот известен со времени античности: может ли быстроногий Ахиллес догнать черепаху, если в каждый конкретный момент времени черепаха также продвигается вперед? Если следовать правилам логики, Ахиллесу ее никогда не догнать! Не получится ли сходная ситуация и при машинном переводе: информация, заложенная в ЭВМ, будет устаревать к тому моменту, когда начнется практическое применение «электронного мозга?» Ведь слова, как известно, меняются со временем. И никакому Ахиллесу-роботу не догнать наш неспешный, но постоянно изменяющийся язык-черепаху…

Более того, слова не являются, строго говоря, отдельными изолированными единицами языка. Смысл их связан со смыслом других слов, все слова как бы прошиты незримыми нитями ассоциаций. Причем границы между этими связями нечетки, они как бы размыты. Приведем такой пример. В нашем языке есть группа прилагательных, относящихся к возрасту человека: детский, отроческий, юношеский, молодой, средних лет, пожилой, старый. Но попробуйте-ка четко и однозначно распределить смысл этих слов по строгой шкале лет, и вы убедитесь сами, насколько размыты границы между детским и отроческим, отроческим и юношеским, юношеским и молодым, молодым и средних лет, средних лет и пожилым, пожилым и старым у разных людей, в зависимости от их собственного возраста (вспомните журналиста из «Двенадцати стульев», считавшего стариком всякого, чей возраст превысил двадцать лет!).

Теория нечетких множеств — так называется новая область математики, одна из самых интересных и перспективных, которая родилась в связи с описанием языка. Ее аппарат начинает применяться и для машинного перевода, и для информационного поиска. А надежной точкой опоры становятся те холодные числа, данные статистики, о которых рассказывал наш первый очерк. И если первые опыты по машинному переводу были в полном смысле слова опытами, то в наши дни начинается промышленная эксплуатация МП.

Диалог продолжается…

Конечно, никто из ученых не пытается сейчас дать совершенный перевод с помощью машины, подобный переводу человеческому. И переводится не любой текст, а текст по какой-либо узкой специальности, например химии полимеров или низкотемпературной плазме. Но ведь именно такой подстрочный, так сказать, рабочий перевод текстов по специальности и необходим в первую очередь ученым, инженерам, техникам, работающим в той же химии полимеров или в области низкотемпературных плазм.

Первая в нашей стране промышленная эксплуатация МП была осуществлена в 1976 году в Чимкентском пединституте по заказу Института химии Академии наук Казахской ССР. ЭВМ системы «Минск» переводит английский текст длиной в тысячу слов, то есть около трех страниц, за двадцать — двадцать пять минут. И это, учитывая ввод текста в машину и вывод его из машины в виде отпечатанного русскими буквами перевода!

В конце 1977 года в Алмаатинском энергетическом институте проходила VII Всесоюзная конференция по генераторам низкотемпературной плазмы. Участвовали в ней и гости из других стран. Делегатам и гостям были вручены три компактные книжечки в красном переплете: англо-русский и русско-английский, французско-русский и русско-французский, немецко-русский и русско-немецкий словари-минимумы. Предназначены они для чтения научных текстов по плазме, а также для разговора с зарубежными коллегами. Автором же этих словарей была… вычислительная машина и, естественно, коллектив программистов и языковедов, составивших машинную программу. За три месяца ЭВМ проделала работу, на которую потребовалось бы несколько лет труда сектора научного учреждения.

Перед нами широкий лист бумаги. Вверху напечатан запрос: «Прошу определить общую тему документа». Далее следует французский текст статьи по технологии окраски. Внизу дается ответ на русском языке: «Документ относится к теме «электрофорез». Затем снова запрос: «Прошу дать машинный реферат документа». На него тут же дан развернутый ответ.

«В этом диалоге, казалось бы, нет ничего удивительного, — пишет профессор Р. Г. Пиотровский, руководитель группы «Статистика речи». — Именно таким образом сотни референтов-переводчиков ведут беседу со своими заказчиками. Однако приведенный текст представляет собой человеко-машинный диалог, в котором вопросы формулировал человек, а ответы на правильном русском языке без всякой подсказки выдавала машина. Учителями компьютера были языковеды, химики и математики из лаборатории инженерной лингвистики Ленинградского педагогического института имени А. И. Герцена и Кишиневского политехнического института».

Лишь совсем недавно человеческий мозг создал «мозг» электронный, вычислительные машины. На первых порах диалог человека с ЭВМ казался фантастикой. Затем настала пора радужных надежд и горьких разочарований. Но работа продолжается, продолжаются поиски подходов и методов, с помощью которых вычислительные машины включатся в человеческое общество и «электронный мозг» станет не просто чудо-счетчиком, по и надежным и верным помощником в тысяче других дел. Путь к этому — обучить машины человеческому языку.

Диалог человека и робота только-только начинается! Мы же закончим наш рассказ о МП — машинном переводе, о поисках ЯП — языка-посредника и о создании ИЯ — информационных языков словами Норберта Винера, которого называют «отцом кибернетики»: «Отдайте же человеку — человеческое, а вычислительной машине— машинное. В этом и должна, по-видимому, заключаться разумная линия поведения при организации совместных действий людей и машин. Линия эта в равной мере далека и от устремлений машинопоклонников, и от воззрений тех, кто во всяком использовании механических помощников в умственной деятельности усматривает кощунство и принижение человека».

В ПОИСКАХ ЗНАЧЕНИЯ

Передача смысла, значения — вот цель нашего общения, главная задача человеческого языка и, стало быть, главная задача науки об этом языке. Можно ли описывать это значение на языке точных формул и чисел?

О том, как математическая лингвистика штурмует «святая святых» языка, расскажет очерк

В ПОИСКАХ ЗНАЧЕНИЯ

Путь к семантике

Не так давно в сектор структурной и прикладной лингвистики Института языкознания Академии наук пришел человек с рюкзаком. В рюкзаке лежали словари: индонезийского, английского, русского, древнегреческого и других языков.

Человек с рюкзаком объявил: он сделал важное открытие. Чтобы определить степень развитости того или иного языка, надо мерять слова. В буквальном смысле мерять — линейкою. Оказывается, древнегреческие слова на пять миллиметров длиннее индонезийских. Стало быть, и сам язык эллинов более развит…

Конечно, это курьез. Но еще каких-нибудь два десятка лет назад даже у многих серьезных ученых представление о математической лингвистике принципиально не отличалось от представлений человека с рюкзаком. Помните, как великий комбинатор Остап Бендер, продавая астролябию, напутствовал покупателя словами: «Сама меряет — было бы что мерять». Математической лингвистике отводилась такая же роль: с ее помощью, дескать, все можно в языке измерить, были бы языки!

Но сам термин «математическая лингвистика» не совсем точен. «Нельзя сравнивать термин «математическая лингвистика» с аналогичным термином «математическая физика», — писал профессор Р. Л. Добрушин в годы, когда математическая лингвистика делала свои первые шаги. — Математическая физика — это особый раздел математики, нацеленный на специфические физические приложения; по своим методам он не менее сложен, чем любой другой раздел математики. В лингвистике же речь должна идти о первых шагах применения математики».

В пионерских работах применялся традиционный аппарат теории вероятностей и теории множеств, математической статистики и теории информации. Однако в наши дни начинается создание и своего особого математического аппарата для лингвистики, подобно тому, как он был создан для экономики с ее линейным и динамическим программированием, теорий игр и теорий массового обслуживания. Особые лингвистические проблемы привели к тому, что в математике родилась совершенно новая область — теория формальных грамматик.